Peter Kollar
University of Veterinary and Pharmaceutical Sciences Brno
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Kollar.
Journal of Natural Products | 2010
Karel Šmejkal; J Svacinova; Tereza Šlapetová; Kristýna Schneiderová; Stefano Dall'Acqua; Gabbriella Innocenti; Zavalova; Peter Kollar; Stanislav Chudík; Radek Marek; Ondřej Julínek; Marie Urbanová; Murat Kartal; M Csollei; K. Dolezal
Nine geranylated flavanones isolated from the fruits of Paulownia tomentosa (4-12) and two from the roots of Morus alba (13 and 14) were examined for cytotoxicity to selected human cancer cell lines and normal human fibroblasts. Cytotoxicity was determined in vitro using a calcein AM cytotoxicity assay. Cytotoxicity for the THP-1 monocytic leukemia cell line was tested using erythrosin B cell staining. The geranylated compounds tested were compared with the known simple flavanone standards taxifolin (1), naringenin (2), and hesperetin (3) and with the standard anticancer drugs olomoucine II, diaziquone, and oxaliplatin and the antineoplastic compound camptothecin, and showed different levels of cytotoxicity. The effects of structural changes on cytotoxic activity, including geranyl substitution of the flavanone skeleton and the oxidation pattern of ring B of the flavanones, are discussed.
Bioorganic & Medicinal Chemistry | 2013
Tomas Gonec; Jiri Kos; Iveta Zadrazilova; Matus Pesko; Stanislava Keltosova; Jan Tengler; Pavel Bobal; Peter Kollar; Alois Cizek; Katarina Kralova; Josef Jampilek
In this study, a series of 22 ring-substituted 1-hydroxynaphthalene-2-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Mycobacterium marinum, Mycobacterium kansasii and Mycobacterium smegmatis. The compounds were also tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Most of tested compounds showed the antimycobacterial activity against the three strains comparable or higher than the standard isoniazid. N-(3-Fluorophenyl)-1-hydroxynaphthalene-2-carboxamide showed the highest biological activity (MIC=28.4μmol/L) against M. marinum, N-(4-fluorophenyl)-1-hydroxynaphthalene-2-carboxamide showed the highest biological activity (MIC=14.2μmol/L) against M. kansasii, and N-(4-bromophenyl)-1-hydroxynaphthalene-2-carboxamide expressed the highest biological activity (MIC=46.7μmol/L) against M. smegmatis. This compound and 1-hydroxy-N-(3-methylphenyl)naphthalene-2-carboxamide were the most active compounds against all three tested strains. The PET inhibition expressed by IC50 value of the most active compound 1-hydroxy-N-(3-trifluoromethylphenyl)naphthalene-2-carboxamide was 5.3μmol/L. The most effective compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. For all compounds, structure-activity relationships are discussed.
Pharmaceutical Biology | 2014
Peter Kollar; Josef Rajchard; Zuzana Balounová; Jiří Pazourek
Abstract Context: Bryostatins represent an important group of pharmaceutically promising substances. These compounds are produced by commensal microorganisms naturally occurring in marine invertebrates, mainly in bryozoans. The most frequently investigated substance is bryostatin-1, which is a highly oxygenated macrolide with a polyacetate backbone. Objective: The aim of this work was to summarize documented preclinical and clinical effects of bryostatin-class compounds. Methods: A literature search was made of Medline and Web of Science databases in 2012. Results and conclusion: Our review showed that bryostatins are potent agonists of protein kinase C. In addition to this, their significant antineoplastic activity against several tumor types has also been established and described. Bryostatins anticancer activity has been proved against various cancer types. Moreover, significant results have been achieved by using bryostatin-1 in combination with other therapies, including combination with vaccine testing. Concerning other important properties that bryostatins possess, their ability to sensitize some resistant cells to chemotherapy agents, or immunoactivity and further stimulating growth of new neural connections, and enhancing effect on long-term memory are worth mentioning. In particular, some new bryostatin analogs could represent potential therapeutic agent for the treatment of cancer and other diseases in future.
Molecules | 2012
Tomas Gonec; Pavel Bobal; Josef Sujan; Matus Pesko; Jiahui Guo; Katarina Kralova; Lenka Pavlacka; Libor Vesely; Eva Kreckova; Jiri Kos; Aidan Coffey; Peter Kollar; Ales Imramovsky; Lukas Placek; Josef Jampilek
In this study, a series of thirty-five substituted quinoline-2-carboxamides and thirty-three substituted naphthalene-2-carboxamides were prepared and characterized. They were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial species. N-Cycloheptylquinoline-2-carboxamide, N-cyclohexylquinoline-2-carboxamide and N-(2-phenylethyl)quinoline-2-carboxamide showed higher activity against M. tuberculosis than the standards isoniazid or pyrazinamide and 2-(pyrrolidin-1-ylcarbonyl)quinoline and 1-(2-naphthoyl)pyrrolidine expressed higher activity against M. kansasii and M. avium paratuberculosis than the standards isoniazid or pyrazinamide. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The PET-inhibiting activity expressed by IC50 value of the most active compound N-benzyl-2-naphthamide was 7.5 μmol/L. For all compounds, the structure-activity relationships are discussed.
Bioorganic & Medicinal Chemistry | 2012
Dagmar Fajkusova; Matus Pesko; Stanislava Keltosova; Jiahui Guo; Zbynek Oktabec; Marcela Vejsova; Peter Kollar; Aidan Coffey; Jozef Csollei; Katarina Kralova; Josef Jampilek
In this study, a series of N-substituted 2-aminobenzothiazoles was prepared according to a recently developed method. Twelve compounds were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the discussed compounds was also performed against fungal, bacterial and mycobacterial species. The biological activities of some compounds were comparable or higher than the standards phenoxymethylpenicillin or pyrazinamide. The most effective compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. For all compounds, the structure-activity relationships are discussed.
Phytomedicine | 2012
Kristýna Pěnčíková; Peter Kollar; V. Müller Závalová; Eva Táborská; Jana Urbanová; Jan Hošek
Quaternary benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine have been used in folk medicine for their wide range of useful properties. One of their major effect is also anti-inflammatory activity, that is not clarified in detail. This study focused on the ability of these alkaloids to modulate the gene expression of pro-inflammatory tumour necrosis factor α (TNF-α), monocyte chemoattractant protein 1 (MCP-1, also known as CCL-2), interleukin (IL)-6, IL-1β and anti-inflammatory cytokines IL-1 receptor antagonist (IL-1RA) and IL-10. The effect of these alkaloids was compared with that of conventional drug prednisone. Human monocyte-derived macrophages were pre-treated with alkaloids or prednisone and inflammatory reaction was induced by lipopolysaccharide. Changes of gene expression at the transcriptional level of mentioned cytokines were measured. In our study mainly affected pro-inflammatory cytokines were CCL-2 and IL-6. Two hours after LPS stimulation, cells influenced by sanguinarine and chelerythrine significantly declined the CCL-2 expression by a factors of 3.5 (p<0.001) and 1.9 (p<0.01); for those treated with prednisone the factor was 5.3 (p<0.001). Eight hours after LPS induction, both alkaloids significantly diminished the CCL-2 expression. The lower expression was found for sanguinarine--lower by a factor of 4.3 than for cells treated with the vehicle (p<0.001). Two hours after LPS stimulation, cells treated with sanguinarine decreased the IL-6 mRNA level by a factor of 3.9 (p<0.001) compared with cells treated with the vehicle. Chelerythrine decreased the level of IL-6 mRNA by a factor of 1.6 (p<0.001). Sanguinarine decreased gene expression of CCL-2 and IL-6 more than chelerythrine and its effect was quite similar to prednisone. Four hours after LPS stimulation, cells pre-treated with sanguinarine exhibited significantly higher expression (a factor of 1.7, p<0.001) of IL-1RA than cells without sanguinarine treatment. Our results help to clarify possible mechanisms of action of these alkaloids in the course of inflammation.
Journal of Natural Products | 2011
Jan Hošek; Milan Bartos; Stanislav Chudík; Stefano Dall’Acqua; Gabbriella Innocenti; Murat Kartal; Ladislav Kokoska; Peter Kollar; Zsofia Kutil; P Landa; Radek Marek; Veronika Závalová; Milan Žemlička; Karel Šmejkal
Cudraflavone B (1) is a prenylated flavonoid found in large amounts in the roots of Morus alba, a plant used as a herbal remedy for its reputed anti-inflammatory properties. The present study shows that this compound causes a significant inhibition of inflammatory mediators in selected in vitro models. Thus, 1 was identified as a potent inhibitor of tumor necrosis factor α (TNFα) gene expression and secretion by blocking the translocation of nuclear factor κB (NF-κB) from the cytoplasm to the nucleus in macrophages derived from a THP-1 human monocyte cell line. The NF-κB activity reduction resulted in the inhibition of cyclooxygenase 2 (COX-2) gene expression. Compound 1 acts as a COX-2 and COX-1 inhibitor with higher selectivity toward COX-2 than indomethacin. Pretreatment of cells by 1 shifted the peak in an regulatory gene zinc-finger protein 36 (ZFP36) expression assay. This natural product has noticeable anti-inflammatory properties, suggesting that 1 potentially could be used for development as a nonsteroidal anti-inflammatory drug lead.
British Journal of Pharmacology | 2011
Peter Kollar; Tomáš Bárta; Veronika Závalová; Karel Šmejkal; Aleš Hampl
Paulownia tomentosa is a rich source of geranylated flavanones, some of which we have previously shown to have cytotoxic activity. To identify members of this class of compounds with cytostatic effects, we assessed the effects of the geranylated flavanone tomentodiplacone B (TOM B) on cell cycle progression and cell cycle regulatory pathways of THP‐1 human monocytic leukaemia cells.
International Immunopharmacology | 2011
Peter Kollar; Veronika Závalová; Jan Hošek; Pavel Havelka; Tomas Sopuch; Michal Karpisek; Dominika Třetinová; Pavel Suchý
The cytotoxicity and in vitro effects of six variously modified types of cellulose (OC--oxidized cellulose, NaOC--oxidized cellulose sodium salt, DAC--dialdehyde cellulose, CMC--carboxymethyl cellulose, MFC--microfibrilated cellulose, and MCC--microcrystalline cellulose) on the inflammatory response in macrophage-like THP-1 cells were examined, with special focus on their ability to influence gene expression and the production of TNF-α. The study provides evidence that DAC exerts a marked effect on the induction of TNF-α gene expression and its subsequent production in human macrophages. Thus, the use of DAC for anti-hemorrhagic or wound-healing therapy should be considered carefully with regard to its pro-inflammatory activity. On the contrary, MCC showed significant anti-inflammatory effects in the LPS-induced conditions, which might be beneficial for the treatment of non-healing chronic wounds, e.g., diabetic or venous ulcers.
Molecules | 2015
Tomas Gonec; Iveta Zadrazilova; Eoghan Nevin; Tereza Kauerova; Matus Pesko; Jiri Kos; Michal Oravec; Peter Kollar; Aidan Coffey; Jim O'Mahony; Alois Cizek; Katarina Kralova; Josef Jampilek
A series of fifteen new N-alkoxyphenylanilides of 3-hydroxynaphthalene-2-carboxylic acid was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra and M. avium subsp. paratuberculosis. Some of the tested compounds showed antibacterial and antimycobacterial activity against the tested strains comparable with or higher than that of the standards ampicillin or rifampicin. 3-Hydroxy-N-(2-propoxyphenyl)naphthalene-2-carboxamide and N-[2-(but-2-yloxy)-phenyl]-3-hydroxynaphthalene-2-carboxamide had MIC = 12 µM against all methicillin-resistant S. aureus strains; thus their activity is 4-fold higher than that of ampicillin. The second mentioned compound as well as 3-hydroxy-N-[3-(prop-2-yloxy)phenyl]-naphthalene-2-carboxamide had MICs = 23 µM and 24 µM against M. tuberculosis respectively. N-[2-(But-2-yloxy)phenyl]-3-hydroxynaphthalene-2-carboxamide demonstrated higher activity against M. avium subsp. paratuberculosis than rifampicin. Screening of the cytotoxicity of the most effective antimycobacterial compounds was performed using THP-1 cells, and no significant lethal effect was observed for the most potent compounds. The compounds were additionally tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. N-(3-Ethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (IC50 = 4.5 µM) was the most active PET inhibitor. The structure-activity relationships are discussed.
Collaboration
Dive into the Peter Kollar's collaboration.
University of Veterinary and Pharmaceutical Sciences Brno
View shared research outputsUniversity of Veterinary and Pharmaceutical Sciences Brno
View shared research outputs