Peter Krolla-Sidenstein
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Krolla-Sidenstein.
Frontiers in Plant Science | 2015
Claudia Koch; Katrin Wabbel; Fabian J. Eber; Peter Krolla-Sidenstein; Carlos Azucena; Hartmut Gliemann; Sabine Eiben; Fania Geiger; Christina Wege
Tobacco mosaic virus (TMV) is a robust nanotubular nucleoprotein scaffold increasingly employed for the high density presentation of functional molecules such as peptides, fluorescent dyes, and antibodies. We report on its use as advantageous carrier for sensor enzymes. A TMV mutant with a cysteine residue exposed on every coat protein (CP) subunit (TMVCys) enabled the coupling of bifunctional maleimide-polyethylene glycol (PEG)-biotin linkers (TMVCys/Bio). Its surface was equipped with two streptavidin [SA]-conjugated enzymes: glucose oxidase ([SA]-GOx) and horseradish peroxidase ([SA]-HRP). At least 50% of the CPs were decorated with a linker molecule, and all thereof with active enzymes. Upon use as adapter scaffolds in conventional “high-binding” microtiter plates, TMV sticks allowed the immobilization of up to 45-fold higher catalytic activities than control samples with the same input of enzymes. Moreover, they increased storage stability and reusability in relation to enzymes applied directly to microtiter plate wells. The functionalized TMV adsorbed to solid supports showed a homogeneous distribution of the conjugated enzymes and structural integrity of the nanorods upon transmission electron and atomic force microscopy. The high surface-increase and steric accessibility of the viral scaffolds in combination with the biochemical environment provided by the plant viral coat may explain the beneficial effects. TMV can, thus, serve as a favorable multivalent nanoscale platform for the ordered presentation of bioactive proteins.
International Journal of Systematic and Evolutionary Microbiology | 2014
René Kaden; Cathrin Spröer; Daniel Beyer; Peter Krolla-Sidenstein
A Gram-stain-negative, oxidase and phosphatase-positive and catalase-negative, short rod-shaped bacterium was isolated from sediment of a drinking water reservoir in Germany. Based on 16S rRNA gene sequence and phenotypic properties, the bacterium belongs to the genus Rhodoferax within the family Comamonadaceae. The new taxon differed from related species mainly with respect to its fatty acid composition, low growth temperature, lack of pigments in young cultures and ability to utilize glycerol and d-mannose but not urea. The major fatty acids were C16 : 1ω7c and/or iso-C15 : 0 2-OH, C16 : 0, and C18 : 1ω7c. The only ubiquinone detected was ubiquinone Q-8. The DNA G+C content was 60.3-61 mol%. Because of the phenotypic and genotypic differences from the most closely related taxa, the new strain represents a novel species for which the name Rhodoferax saidenbachensis sp. nov. is proposed. The type strain is ED16(T) ( = CCUG 57711(T) = ATCC BAA-1852(T) = DSM 22694(T)). An emended description of the genus Rhodoferax is proposed. Based on the results of this study, strain T118(T) (Albidiferax ferrireducens) is properly placed in the genus Rhodoferax as Rhodoferax ferrireducens.
Journal of Materials Chemistry B | 2014
Andrew P. Vogt; Julien De Winter; Peter Krolla-Sidenstein; Udo Geckle; Olivier Coulembier; Christopher Barner-Kowollik
A degradable polyphthalaldehyde-polystyrene block copolymer generated by modular ligation is reported for the first time serving as a nanochannel template for the formation of nanostructured materials. The polyphthalaldehyde-b-polystyrene copolymer was spin-coated onto a surface with subsequent polyphthalaldehyde block removal. Block conjugation and block removal were confirmed by H-NMR, SEC, AFM, and SEM.
Clays and Clay Minerals | 2011
Kerstin Petrick; Ralf Diedel; Miriam Peuker; Matthias Dieterle; Paul Kuch; René Kaden; Peter Krolla-Sidenstein; Rainer Schuhmann; Katja Emmerich
The industrial assessment of ceramic clays commonly consists of the determination of just two parameters, the particle-size distribution and the chemical composition; other parameters may also be important, however. The aim of the present study was to show that a careful determination of the mineralogical phase content provides valuable additional information on the processing behavior of ceramic clays.Two ceramic clays (W1 andW2) from theWesterwald area, Germany, were evaluated as being the same with respect to industrial screening criteria, but showed different processing properties. In order to elucidate the different behaviors, both clays were investigated comprehensively using a multi-method approach combining physical-chemical and mineralogical methods.Different aggregation characteristics for the two clays were revealed by determining the grain-size distribution with and without Na-pyrophosphate as a dispersant. In addition, W1 showed a greater electrical conductivity and soluble-salt concentration which promoted dispersion behavior.The phase content was identified both for bulk materials and for several grain-size fractions by X-ray diffraction (XRD) and Rietveld analysis. The quantitative phase content was crosschecked with the chemical composition by X-ray fluorescence (XRF) analysis. Additional information was gathered by thermal analysis, cation exchange capacity (CEC) measurements, Mössbauer spectroscopy, and optical microscopy. While bulk samples of W1 and W2 showed nearly the same mineralogical and chemical compositions, investigation of the clay-size fractions (0.6–2 μm, <0.6 mm) revealed differences in the composition of the 2:1 layer silicates. The percentages of smectite in the mixed-layer I-S, as well as the amount of kaolinite, discrete illite, and smectite were determined by one-dimensional XRD profile fitting (ODPF). Best-fitting results for W1 were achieved for a physical mixture of an illite-rich I-S mixed-layer mineral (R3 I(0.9)-S) with discrete smectite, whereas W2 was characterized by a greater proportion of smectite in the mixed-layer (R1 I(0.8)-S), without discrete smectite. Based on the different structural features of the swellable clays, a qualitative delamination model for the 2:1 layer silicates during processing of the clays was derived. The model provides a further approach, aside from aggregation characteristics, to help understand the clay-processing behavior, which was found to be different for the two ceramic clays investigated.
Beilstein Journal of Organic Chemistry | 2017
Qi An; Youssef Hassan; Xiaotong Yan; Peter Krolla-Sidenstein; Tawheed Mohammed; Mathias Lang; Stefan Bräse; Manuel Tsotsalas
Conjugated microporous polymers (CMPs) are materials of low density and high intrinsic porosity. This is due to the use of rigid building blocks consisting only of lightweight elements. These materials are usually stable up to temperatures of 400 °C and are chemically inert, since the networks are highly crosslinked via strong covalent bonds, making them ideal candidates for demanding applications in hostile environments. However, the high stability and chemical inertness pose problems in the processing of the CMP materials and their integration in functional devices. Especially the application of these materials for membrane separation has been limited due to their insoluble nature when synthesized as bulk material. To make full use of the beneficial properties of CMPs for membrane applications, their synthesis and functionalization on surfaces become increasingly important. In this respect, we recently introduced the solid liquid interfacial layer-by-layer (LbL) synthesis of CMP-nanomembranes via Cu catalyzed azide–alkyne cycloaddition (CuAAC). However, this process featured very long reaction times and limited scalability. Herein we present the synthesis of surface grown CMP thin films and nanomembranes via light induced thiol–yne click reaction. Using this reaction, we could greatly enhance the CMP nanomembrane synthesis and further broaden the variability of the LbL approach.
Clays and Clay Minerals | 2014
Rene Kaden; Eve Menger-Krug; Katja Emmerich; Kerstin Petrick; Peter Krolla-Sidenstein
To date, ~1% of all bacteria that occur in environmental ecosystems such as soil, sedimentary rocks, and groundwater have been described. Comprehensive explanation of ecological interactions on a microscale level is thus almost impossible. The Dynamic Cultivation System (DCS) was developed in order to detect more microbial taxa than with common cultivation approaches, as well as previously undescribed bacterial species. The DCS is a quick and easy in situ method for the cultivation of numerous bacterial taxa in support of the description of microbial colonized ecosystems. To investigate the bacterial populations within a clay-maturation process after mining the raw material, the DCS was used to increase the microbial biomass for further molecular analysis. Two different methods were applied to extract the bacteria from the DCS and these were compared in terms of efficiency at detection of large numbers of different taxa and in terms of applicability to the detection of previously undescribed species in raw clays. A collection of different undescribed species was detected with sequencing. While direct picking of bacterial colonies leads to the detection of different genera, species mainly of the genus Arthobacter were proved in the phosphate-buffered saline-suspended biomass. Thus, a combination of the approaches mentioned above is recommended to increase the number of detectable species. The DCS will help to describe better the microbial content of ecosystems, especially soils that contain charged particles.
Microorganisms | 2015
Rene Kaden; Peter Krolla-Sidenstein
A DNA extraction that comprises the DNA of all available taxa in an ecosystem is an essential step in population analysis, especially for next generation sequencing applications. Many nanoparticles as well as naturally occurring clay minerals contain charged surfaces or edges that capture negatively charged DNA molecules after cell lysis within DNA extraction. Depending on the methodology of DNA extraction, this phenomenon causes a shift in detection of microbial taxa in ecosystems and a possible misinterpretation of microbial interactions. With the aim to describe microbial interactions and the bio-geo-chemical reactions during a clay alteration experiment, several methods for the detection of a high number of microbial taxa were examined in this study. Altogether, 13 different methods of commercially available DNA extraction kits provided by seven companies as well as the classical phenol-chloroform DNA extraction were compared. The amount and the quality of nucleic acid extracts were determined and compared to the amplifiable amount of DNA. The 16S rRNA gene fragments of several taxa were separated using denaturing gradient gel electrophoresis (DGGE) to determine the number of different species and sequenced to get the information about what kind of species the microbial population consists of. A total number of 13 species was detected in the system. Up to nine taxa could be detected with commercially available DNA extraction kits while phenol-chloroform extraction lead to three detected species. In this paper, we describe how to combine several DNA extraction methods for the investigation of microbial community structures in clay.
Macromolecules | 2013
Ozcan Altintas; Johannes Willenbacher; Kilian N. R. Wuest; Kim K. Oehlenschlaeger; Peter Krolla-Sidenstein; Hartmut Gliemann; Christopher Barner-Kowollik
Chemistry of Materials | 2014
Peter Lindemann; Manuel Tsotsalas; Sergey Shishatskiy; Volker Abetz; Peter Krolla-Sidenstein; Carlos Azucena; Laure Monnereau; André Beyer; Armin Gölzhäuser; Veronica Mugnaini; Hartmut Gliemann; Stefan Bräse; Christof Wöll
Macromolecules | 2015
Astrid F. Hirschbiel; Bernhard V. K. J. Schmidt; Peter Krolla-Sidenstein; James P. Blinco; Christopher Barner-Kowollik