Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Kuipers Munneke is active.

Publication


Featured researches published by Peter Kuipers Munneke.


Journal of Geophysical Research | 2009

Clear‐sky shortwave radiative closure for the Cabauw Baseline Surface Radiation Network site, Netherlands

P. Wang; Wouter H. Knap; Peter Kuipers Munneke; P. Stammes

[1] In this paper a clear-sky shortwave closure analysis is presented for the Baseline Surface Radiation Network (BSRN) site of Cabauw, Netherlands (51.97N, 4.93E). The analysis is based on an exceptional period of fine weather during the first half of May 2008, resulting in a selection of 72 comparisons, on 6 days, between BSRN measurements and Doubling Adding KNMI (DAK) model simulations of direct, diffuse, and global irradiances. The data span a wide range of aerosol properties, water vapor columns, and solar zenith angles. The model input consisted of operational Aerosol Robotic Network (AERONET) aerosol products and radiosonde data. The wavelength dependence of the aerosol optical thickness, single scattering albedo, and asymmetry parameter was taken into account. On the basis of these data, excellent closure was obtained: the mean differences between model and measurements are 2 W/m 2 (+0.2%) for the direct irradiance, 1 W/m 2 (+0.8%) for the diffuse irradiance, and 2 W/m 2 (+0.3%) for the global irradiance. The good results were obtained because of proper specification of the DAK model input and the high quality of the AERONET and BSRN measurements. The sensitivity of the achieved closure to uncertainties in the aerosol optical thickness, single scattering albedo, and asymmetry parameter was examined. Furthermore, several sensitivity experiments related to the wavelength dependence of the aerosol optical properties and the treatment of water vapor were performed. It appeared that a correct description of the wavelength dependence of the aerosol optical properties is important for achieving broadband closure. However, broadband closure can also be obtained by means of using spectrally averaged values of the single scattering albedo and the asymmetry parameter. Cancellation of errors in different parts of the solar spectrum also contributes to the achieved closure.


Geophysical Research Letters | 2016

A high‐resolution record of Greenland mass balance

Malcolm McMillan; Amber Leeson; Andrew Shepherd; Kate Briggs; Thomas W. K. Armitage; Anna E. Hogg; Peter Kuipers Munneke; Michiel R. van den Broeke; Brice Noël; Willem Jan van de Berg; Stefan R. M. Ligtenberg; Martin Horwath; Andreas Groh; Alan Muir; Lin Gilbert

We map recent Greenland Ice Sheet elevation change at high spatial (5 km) and temporal (monthly) resolution using CryoSat-2 altimetry. After correcting for the impact of changing snowpack properties associated with unprecedented surface melting in 2012, we find good agreement (3 cm/yr bias) with airborne measurements. With the aid of regional climate and firn modeling, we compute high spatial and temporal resolution records of Greenland mass evolution, which correlate (R = 0.96) with monthly satellite gravimetry and reveal glacier dynamic imbalance. During 2011–2014, Greenland mass loss averaged 269 ± 51 Gt/yr. Atmospherically driven losses were widespread, with surface melt variability driving large fluctuations in the annual mass deficit. Terminus regions of five dynamically thinning glaciers, which constitute less than 1% of Greenland’s area, contributed more than 12% of the net ice loss. This high-resolution record demonstrates that mass deficits extending over small spatial and temporal scales have made a relatively large contribution to recent ice sheet imbalance.


Antarctic Science | 2014

Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds

Adrian Luckman; Andrew D. Elvidge; Daniela Jansen; Bernd Kulessa; Peter Kuipers Munneke; John C. King; Nicholas E. Barrand

Abstract A common precursor to ice shelf disintegration, most notably that of Larsen B Ice Shelf, is unusually intense or prolonged surface melt and the presence of surface standing water. However, there has been little research into detailed patterns of melt on ice shelves or the nature of summer melt ponds. We investigated surface melt on Larsen C Ice Shelf at high resolution using Envisat advanced synthetic aperture radar (ASAR) data and explored melt ponds in a range of satellite images. The improved spatial resolution of SAR over alternative approaches revealed anomalously long melt duration in western inlets. Meteorological modelling explained this pattern by föhn winds which were common in this region. Melt ponds are difficult to detect using optical imagery because cloud-free conditions are rare in this region and ponds quickly freeze over, but can be monitored using SAR in all weather conditions. Melt ponds up to tens of kilometres in length were common in Cabinet Inlet, where melt duration was most prolonged. The pattern of melt explains the previously observed distribution of ice shelf densification, which in parts had reached levels that preceded the collapse of Larsen B Ice Shelf, suggesting a potential role for föhn winds in promoting unstable conditions on ice shelves.


Geophysical Research Letters | 2013

Satellite-based estimates of Antarctic surface meltwater fluxes

Luke D. Trusel; Karen E. Frey; Sarah B. Das; Peter Kuipers Munneke; Michiel R. van den Broeke

This study generates novel satellite-derived estimates of Antarctic-wide annual (1999–2009) surface meltwater production using an empirical relationship between radar backscatter from the QuikSCAT (QSCAT) satellite and melt calculated from in situ energy balance observations. The resulting QSCAT-derived melt fluxes significantly agree with output from the regional climate model RACMO2.1 and with independent ground-based observations. The highresolution (4.45 km) QSCAT-based melt fluxes uniquely detect interannually persistent and intense melt (>400mm water equivalent (w.e.) year 1) on interior Larsen C Ice Shelf that is not simulated by RACMO2.1. This supports a growing understanding of the importance of a fohn effect in this region and quantifies the resulting locally enhanced melting that is spatially consistent with recently observed Larsen C thinning. These new results highlight important cryosphere-climate interactions and processes that are presently not fully captured by the coarser-resolution (27 km) regional climate model. Citation: Trusel, L. D., K. E. Frey, S. B. Das, P. Kuipers Munneke, and M. R. van den Broeke (2013), Satellite-based estimates of Antarctic surface meltwater fluxes, Geophys. Res. Lett., 40, 6148–6153, doi:10.1002/2013GL058138.


Science Advances | 2016

Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland ice sheet.

Shfaqat Abbas Khan; Ingo Sasgen; Michael Bevis; Tonie van Dam; Jonathan L. Bamber; John Wahr; Michael J. Willis; Kurt H. Kjær; Bert Wouters; Veit Helm; Bea M. Csatho; Kevin Fleming; Anders A. Bjørk; Andy Aschwanden; Per Knudsen; Peter Kuipers Munneke

Present destabilization of marine-based sectors in Greenland may increase sea level for centuries to come. Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin-wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year.


Antarctic Science | 2010

Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica

Michiel R. van den Broeke; Gert König-Langlo; Ghislain Picard; Peter Kuipers Munneke; Jan T. M. Lenaerts

Abstract A surface energy balance model is forced by 13 years of high-quality hourly observations from the Antarctic coastal station Neumayer. The model accurately reproduces observed surface temperatures. Surface sublimation is significant in summer, when absorbed solar radiation heats the surface. Including a first order estimate of snowdrift sublimation in the calculation more than triples the total sublimation, removing 19% of the solid precipitation, indicating that snowdrift sublimation is potentially important for the mass balance of Antarctic ice shelves. Surface melt occurs at Neumayer in all summers, but all the meltwater refreezes. In two-thirds of the cases, the refreezing is quasi-instantaneous (within the model timestep of 6 min), so that no liquid water remains in the snow. For all other events, the occurrence of liquid water in the snowpack at Neumayer agrees well with satellite-based liquid water detection.


Nature Communications | 2016

Massive subsurface ice formed by refreezing of ice-shelf melt ponds

Bryn Hubbard; Adrian Luckman; David W. Ashmore; Suzanne Bevan; Bernd Kulessa; Peter Kuipers Munneke; Morgane Philippe; Daniela Jansen; Adam D. Booth; Heïdi Sevestre; Jean-Louis Tison; Martin O’Leary; Ian C. Rutt

Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades.


Annals of Glaciology | 2015

A model study of the response of dry and wet firn to climate change

Peter Kuipers Munneke; Stefan R. M. Ligtenberg; Eric A. Suder; Michiel R. van den Broeke

Abstract We study the response of firn to a stepwise surface temperature change, using a firn model that includes meltwater hydrology and is driven by an idealized surface climate. We find that adjustment of dry firn (i.e. without surface melt) to surface warming takes longer than a subsequent cooling to the original, colder climate, mainly because firn compacts faster at higher firn temperatures. In contrast, wet firn adjusts faster to a surface warming than to a cooling. Increased meltwater percolation enhances the downward transport of latent heat, whereas there is no such mechanism that can enhance the downward transport of a cooling signal. Thus, wastage of firn after surface warming is faster than its regeneration if the warming were reversed. Furthermore, the response of wet firn to temperature change exhibits a complex relation between accumulation rate and the steady-state deep-firn temperature. For high accumulation rates, the deep-firn temperature is higher because latent heat release upon refreezing is isolated by winter snow. As a result, the response of wet firn to a temperature change varies strongly with accumulation rate. In general, the magnitude and the rate of density change is larger in wet firn than in dry firn.


Journal of Geophysical Research | 2017

Ice and firn heterogeneity within Larsen C Ice Shelf from borehole optical televiewing

David W. Ashmore; Bryn Hubbard; Adrian Luckman; Bernd Kulessa; Suzanne Bevan; Adam D. Booth; Peter Kuipers Munneke; Martin O'Leary; Heïdi Sevestre; Paul R. Holland

We use borehole optical televiewing (OPTV) to explore the internal structure of Larsen C Ice Shelf (LCIS). We report a suite of five ~90 m long OPTV logs, recording a light-emitting diode-illuminated, geometrically correct image of the borehole wall, from the northern and central sectors of LCIS collected during austral spring 2014 and 2015. We use a thresholding-based technique to estimate the refrozen ice content of the ice column and exploit a recently calibrated density-luminosity relationship to reveal its structure. All sites are dense and strongly influenced by surface melt, with frequent refrozen ice layers and mean densities, between the depths of 1.87 and 90 m, ranging from 862 to 894 kg m−3. We define four distinct units that comprise LCIS and relate these to ice provenance, dynamic history, and past melt events. These units are in situ meteoric ice with infiltration ice (U1), meteoric ice which has undergone enhanced densification (U2), thick refrozen ice (U3), and advected continental ice (U4). We show that the OPTV-derived pattern of firn air content is consistent with previous estimates, but that a significant proportion of firn air is contained within U4, which we interpret to have been deposited inland of the grounding line. The structure of LCIS is strongly influenced by the E-W gradient in fohn-driven melting, with sites close to the Antarctic Peninsula being predominantly composed of refrozen ice. Melting is also substantial toward the ice shelf center with >40% of the overall imaged ice column being composed of refrozen ice.


Arctic, Antarctic, and Alpine Research | 2018

The K-transect in west Greenland: Automatic weather station data (1993–2016)

Paul C. J. P. Smeets; Peter Kuipers Munneke; Dirk van As; Michiel R. van den Broeke; W. Boot; Hans Oerlemans; Henk Snellen; C. H. Reijmer; Roderik S. W. van de Wal

ABSTRACT We present twenty-three years (1993–2016) of automatic weather station (AWS) data, collected along the K-transect near Kangerlussuaq in west Greenland. The transect runs from east to west, roughly perpendicular to the ice sheet edge at about 67° N. The K-transect originated from the Greenland Ice Margin Experiments (GIMEX), held in the summers of 1990 and 1991. Until recently, surface mass balance and ice velocity measurements were performed at nine locations along the K-transect, of which four are equipped with AWS: two in the ablation zone at approximately 500 m and 1,000 m asl, one at the approximate equilibrium-line altitude (~1,500 m asl), and one in the lower accumulation zone (~1,850 m asl) at distances of 5, 38, 88, and 140 km from the ice edge, respectively. Here, we present an overview of the various AWS types and their data corrections, quality, and availability, including a preliminary trend analysis. Recent increases in temperature and radiation components are associated with the frequent occurrence of anti-cyclonic conditions in west Greenland, resulting in clear skies and relatively warm summers. Strong melt concurs with a decrease in winter accumulation, lowering the surface albedo of the ice sheet. The AWS situated at 1,500 m asl, the former equilibrium-line altitude (ELA), observed almost a doubling of the summertime net shortwave radiation since 2004; as a result, the ELA along the K-transect has been steadily increasing and is currently situated well above 1,700 m asl.

Collaboration


Dive into the Peter Kuipers Munneke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge