Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter L. A. Giesen is active.

Publication


Featured researches published by Peter L. A. Giesen.


Journal of Biological Chemistry | 1997

Tissue Factor Is Induced by Monocyte Chemoattractant Protein-1 in Human Aortic Smooth Muscle and THP-1 Cells

Alison D. Schecter; Barrett J. Rollins; Yujun J. Zhang; Israel F. Charo; John T. Fallon; Maria Rossikhina; Peter L. A. Giesen; Yale Nemerson; Mark B. Taubman

Monocyte chemoattractant protein-1 (MCP-1) is a C-C chemokine thought to play a major role in recruiting monocytes to the atherosclerotic plaque. Tissue factor (TF), the initiator of coagulation, is found in the atherosclerotic plaque, macrophages, and human aortic smooth muscle cells (SMC). The exposure of TF during plaque rupture likely induces acute thrombosis, leading to myocardial infarction and stroke. This report demonstrates that MCP-1 induces the accumulation of TF mRNA and protein in SMC and in THP-1 myelomonocytic leukemia cells. MCP-1 also induces TF activity on the surface of human SMC. The induction of TF by MCP-1 in SMC is inhibited by pertussis toxin, suggesting that the SMC MCP-1 receptor is coupled to a Gi-protein. Chelation of intracellular calcium and inhibition of protein kinase C block the induction of TF by MCP-1, suggesting that in SMC it is mediated by activation of phospholipase C. SMC bind MCP-1 with a K d similar to that previously reported for macrophages. However, mRNA encoding the macrophage MCP-1 receptors, CCR2A and B, is not present in SMC, indicating that they possess a distinct MCP-1 receptor. These data suggest that in addition to being a chemoattractant, MCP-1 may have a procoagulant function and raise the possibility of an autocrine pathway in which MCP-1, secreted by SMC and macrophages, induces TF activity in these same cells.


Journal of Clinical Investigation | 1997

Tissue factor expression in human arterial smooth muscle cells. TF is present in three cellular pools after growth factor stimulation.

Alison D. Schecter; Peter L. A. Giesen; O. Taby; C.-L. Rosenfield; Maria Rossikhina; Billie Fyfe; Kohtz Ds; John T. Fallon; Yale Nemerson; Mark B. Taubman

Tissue factor (TF) is a transmembrane glycoprotein that initiates the coagulation cascade. Because of the potential role of TF in mediating arterial thrombosis, we have examined its expression in human aortic and coronary artery smooth muscle cells (SMC). TF mRNA and protein were induced in SMC by a variety of growth agonists. Exposure to PDGF AA or BB for 30 min provided all of the necessary signals for induction of TF mRNA and protein. This result was consistent with nuclear runoff analyses, demonstrating that PDGF-induced TF transcription occurred within 30 min. A newly developed assay involving binding of digoxigenin-labeled FVIIa (DigVIIa) and digoxigenin-labeled Factor X (DigX) was used to localize cellular TF. By light and confocal microscopy, prominent TF staining was seen in the perinuclear cytoplasm beginning 2 h after agonist treatment and persisting for 10-12 h. Surface TF activity, measured on SMC monolayers under flow conditions, increased transiently, peaking 4-6 h after agonist stimulation and returning to baseline within 16 h. Peak surface TF activity was only approximately 20% of total TF activity measured in cell lysates. Surface TF-blocking experiments demonstrated that the remaining TF was found as encrypted surface TF, and also in an intracellular pool. The relatively short-lived surface expression of TF may be critical for limiting the thrombotic potential of intact SMC exposed to growth factor stimulation. In contrast, the encrypted surface and intracellular pools may provide a rich source of TF under conditions associated with SMC damage, such as during atherosclerotic plaque rupture or balloon arterial injury.


Circulation Research | 2000

Release of Active Tissue Factor by Human Arterial Smooth Muscle Cells

Alison D. Schecter; Benjamin Spirn; Maria Rossikhina; Peter L. A. Giesen; Vladimir Y. Bogdanov; John T. Fallon; Edward A. Fisher; Lynn M. Schnapp; Yale Nemerson; Mark B. Taubman

Tissue factor (TF), the initiator of coagulation, is thought to function predominantly at the cell surface. Recent data have suggested that active TF is present extracellularly in atherosclerotic plaques, the arterial wall, and the blood. This study was conducted to determine whether smooth muscle cells (SMCs), a major source of arterial TF, could generate extracellular TF. Active TF accumulated in the medium of cultured human SMCs, representing approximately 10% of that measured in the underlying cells at 24 hours. Platelet-derived growth factor, phorbol ester, and tumor necrosis factor-alpha caused approximately 3-fold increases in TF activity in the medium. Release of TF into the medium was dependent on the presence of the TF transmembrane domain but not the cytoplasmic domain. Antibodies to TF precipitated most of the activity from the culture medium, whereas antibodies to the beta(1)-integrin subunit precipitated approximately 33% of the activity. Treatment with detergent or phosphatidylserine:phosphatidylcholine did not increase activity, suggesting that all TF released by SMCs was in the appropriate lipid milieu and not encrypted. Western blotting showed that the medium contained full-length TF protein. Fluorescent cytometry showed that extracellular TF was present largely in particles < or =200 nm, which had a density of 1.10 g/mL. We hypothesize that active extracellular TF found in the injured arterial wall and atherosclerotic plaques derives, in part, from SMC microparticles.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1999

Cooperation Between VEGF and TNF-α Is Necessary for Exposure of Active Tissue Factor on the Surface of Human Endothelial Cells

Marina Camera; Peter L. A. Giesen; Jay Fallon; Barbara M. Aufiero; Mark B. Taubman; Elena Tremoli; Yale Nemerson

This study was undertaken to characterize tissue factor (TF) induction, localization, and functional activity in cultured human umbilical vein endothelial cells (HUVECs) exposed to recombinant vascular endothelial growth factor (rVEGF) and recombinant tumor necrosis factor-alpha (rTNF-alpha). rVEGF (1 nmol/L) and rTNF-alpha (500 U/mL) synergistically increased TF mRNA, protein, and total activity, as measured in cell lysates. To examine surface TF expression, living cells were treated with antibody to TF and examined microscopically. Almost no staining was seen in control cells or cells treated with a single agent. In contrast, cells treated with both agonists showed intense membrane staining with surface patches, appearing as buds by confocal microscopy. To determine surface TF activity, studies were performed using a parallel-plate flow chamber, which allows detection of factor Xa generation on living cells. rVEGF and rTNF-alpha induced little surface TF activity (0.032+/-0.008 and 0.014+/-0.008 fmol/cm2, respectively). In combination, they significantly increased TF expression on the cell surface (0.429+/-0.094 fmol/cm2, P<0.05). These data indicate that the synergistic effect of rVEGF and rTNF-alpha is necessary to generate functional TF on the surface of endothelial cells. The requirement for multiple agonists to expose active TF may serve to protect endothelial cells from acting as a procoagulant surface, even under conditions of cell perturbation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Tissue Factor in Patients With Acute Coronary Syndromes. Expression in Platelets, Leukocytes, and Platelet-Leukocyte Aggregates

Marta Brambilla; Marina Camera; Deborah Colnago; Giancarlo Marenzi; Monica De Metrio; Peter L. A. Giesen; Alessandra Balduini; Fabrizio Veglia; Karl Gertow; Paolo Biglioli; Elena Tremoli

Objective—Activated platelets and circulating platelet-leukocyte aggregates (PLA) are significantly higher in patients with unstable angina than in those with stable angina (SA). Platelets from healthy subjects express TF on activation. The aim of this study was to investigate the expression of TF in PLA, in platelets, and in monocytes of acute coronary syndrome (ACS) patients compared to SA patients and healthy subjects (Controls). Methods and Results—We enrolled 26 consecutive patients with ACS, 29 patients with SA, and 25 Controls. A significantly greater number of total and TF positive platelet-monocyte aggregates was found by flow cytometry in blood of ACS patients than in either SA patients (3-fold) or Controls (5-fold). ACS patients also had a significantly higher amount of TF-positive platelets than SA or Controls (>3-fold) and significantly higher thrombin generation capacity. TF mRNA expression in platelets was significantly higher in ACS patients than in SA or Controls. Conclusions—In ACS patients the greater expression of TF in platelets and PLA strengthens the link between platelet activation, blood coagulation, and thrombus formation and may further contribute to the hypercoagulability associated with the disease.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Variable hypocoagulant effect of fish oil intake in humans: modulation of fibrinogen level and thrombin generation

Kristof Vanschoonbeek; Marion A. H. Feijge; Martine Paquay; Jan Rosing; Wim H. M. Saris; Cornelis Kluft; Peter L. A. Giesen; Moniek P.M. de Maat; Johan W. M. Heemskerk

Objective—The beneficial effect of dietary fish oil, rich in omega-3 polyunsaturated fatty acids (PUFAs), on cardiovascular disease is multifactorial and may partly rely on their anticoagulant action. We studied how fish oil intake influenced thrombin generation in plasma and which factors were involved herein. Methods and Results—Twenty-five healthy males with borderline overweight received 3.0 g omega-3 PUFAs daily for 4 weeks. Fish oil intake reduced plasma triglycerides and lowered platelet integrin activation, as well as plasma levels of fibrinogen and factor V, but had no effect on vitamin K-dependent coagulation factors. Before fish oil intake, thrombin generation (reflecting the coagulant potential) considerably varied between plasmas from individual subjects, which were partly explained by variation in prothrombin, antithrombin, fibrinogen, and factor V levels. Fish oil intake reduced thrombin generation in the presence and absence of platelets. This reduction correlated with the fish oil effect on fibrinogen and factor V levels. Interestingly, the lowering effect of fish oil on thrombin generation and fibrinogen clustered around subjects with high fibrinogen carrying a structural fibrinogen α-chain polymorphism. Conclusions—Dietary omega-3 PUFAs provoke a hypocoagulant, vitamin K-independent effect in humans, the degree of which may depend on fibrinogen level.


Thrombosis and Haemostasis | 2005

Platelet P2Y12 receptors enhance signalling towards procoagulant activity and thrombin generation. A study with healthy subjects and patients at thrombotic risk

Paola E. J. van der Meijden; Marion A. H. Feijge; Peter L. A. Giesen; Maya Huijberts; Lisette P. M. Van Raak; Johan W. M. Heemskerk

Activated platelets participate in arterial thrombosis by forming aggregates and potentiating the coagulation through exposure of procoagulant phosphatidylserine. The function of the two receptors for ADP, P2Y(1) and P2Y(12), is well-established in aggregation, but is incompletely understood in the platelet procoagulant response. We established that, in PRP from healthy subjects, ADP accelerated and potentiated tissue factor induced thrombin generation exclusively via stimulation of P2Y(12) and not via P2Y(1) receptors. The P2Y(12) receptors also mediated the potentiating effect of PAR-1 stimulation on thrombin generation. Furthermore, ADP enhanced in a P2Y(12)-dependent manner the Ca(2+) response induced by thrombin, which was either added externally or generated in-situ. This ADP effect was in part dependent of phosphoinositide 3-kinase and was paralleled by increased phosphatidylserine exposure. In PRP from (young) patients with either stroke or type-II diabetes, platelet-dependent thrombin generation was similarly enhanced byADP or SFLLRN as in healthy subjects. In PRP from stroke patients of older age, the P2Y(12)-mediated contribution to thrombin generation was variably reduced by two weeks of clopidogrel medication. Remaining P2Y(12) activity after medication correlated with remaining P2Y(12)-dependent P-selectin exposure, i.e. Ca(2+)-dependent secretion, likely due to incomplete antagonism of P2Y(12) receptors. Together, these results indicate that physiological platelet agonists amplify phosphatidylserine exposure and subsequent thrombin generation by release of ADP and P2Y(12)-receptor stimulation. This P2Y(12) response is accomplished by a novel Ca(2+) signalling pathway. It is similarly active in platelets from control subjects and patients at thrombotic risk. Finally, the thrombogram method is useful for measuring incomplete P2Y(12) inhibition with clopidogrel.


Transfusion | 2004

Decreased responsiveness and development of activation markers of PLTs stored in plasma

Joyce Curvers; Elisabeth C. M. van Pampus; Marion A. H. Feijge; Eva Rombout-Sestrienkova; Peter L. A. Giesen; Johan W. M. Heemskerk

BACKGROUND:  Circulating PLTs have a low activation state and high responsiveness, which ensures adequate hemostatic activity at sites of vessel wall damage. PLTs collected for transfusion purposes preferably have retained these properties to restore impaired hemostasis with thrombocytopenia.


Thrombosis and Haemostasis | 2004

Regulation of tissue factor-induced coagulation and platelet aggregation in flowing whole blood

Marijke J.E. Kuijpers; Cécile M.A. Nieuwenhuys; Marion A. H. Feijge; Willem Kloots; Peter L. A. Giesen; Johann C. Jerling; Mirjam G.A. oude Egbrink; Johan W. M. Heemskerk

Photochemically induced thrombosis (a thrombin-dependent process) was measured in rats treated with moderate doses of anticoagulants, but which appeared to be unchanged. We considered the possibility that platelet-inhibiting agents, which also indirectly inhibit coagulation, would act as more potent antithrombotic agents. Inhibitors used as such were prostaglandin E1 (PGE1), which elevates cyclic AMP levels, and the P2Y12 ADP-receptor antagonist, AR-C69931MX. Effects of these agents were investigated in an ex vivo model system, in which whole blood under coagulant conditions was perfused over fibrinogen at defined wall shear rate. Perfusion of blood (rat or human) in the presence of tissue factor resulted in deposition of activated platelets and subsequent aggregate formation, along with exposure of procoagulant phosphatidylserine (PS) on the platelet surface and formation of fibrin fibers. In the presence of PGE1 aggregation was completely inhibited, but platelet adhesion and PS exposure were only party reduced, while fibrin formation was hardly affected. Treatment with AR-C69931MX caused similar, but less complete effects. These results indicate that in tissue factor-triggered blood under conditions of flow: (i) the platelet procoagulant response is independent of aggregate formation; (ii) the platelet-inhibiting effect of PGE1 and AR-C69931MX is sufficient to suppress aggregation, but not platelet adhesion and coagulation. These platelet inhibitors thus maintain their aggregation-inhibiting effect at sites of thrombin formation.


Platelets | 2018

Do methodological differences account for the current controversy on tissue factor expression in platelets

Marta Brambilla; Laura Rossetti; Chiara Zara; Paola Canzano; Peter L. A. Giesen; Elena Tremoli; Marina Camera

Abstract Tissue factor (TF), the key activator of the blood coagulation cascade and of thrombus formation, is also expressed by circulating human platelets. Despite the documented in-depth characterization of platelet TF carried out in the past 15 years, some authors still fail to identify TF in platelets, especially when assessment in platelet-rich plasma (PRP) or washed platelets is carried out. This study aims to extend the characterization of the subset of TF-positive platelets in PRP from healthy subjects and to verify how different centrifugation forces, used to prepare the PRP, could affect the analysis of TF-positive platelets. Data indicate that large-size platelets express significantly higher amount of TF compared to small-size cells, in terms of both TF protein and TF mRNA. Upon stimulation, large platelets readily expose on the cell membrane TF, which is functionally active, i.e., able to generate factor Xa (FXa) as well as thrombin. By contrast, TF activity in small platelets is almost completely quenched by tissue factor pathway inhibitor (TFPI), becoming indeed detectable only after treatment with an anti-TFPI antibody. Our data highlight that particular attention must be paid to the preparation and collection of the PRP since such preanalytical variables may influence the platelet recovery and in turn affect subsequent analysis, whether it is flow cytometry, functional activity tests, proteome, or transcriptome analysis. Indeed, the TF-positive subset of large platelets can easily be lost if centrifugation protocols are not optimized, thus erroneously leading to a false-negative result.

Collaboration


Dive into the Peter L. A. Giesen's collaboration.

Top Co-Authors

Avatar

Yale Nemerson

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John T. Fallon

New York Medical College

View shared research outputs
Top Co-Authors

Avatar

Alison D. Schecter

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Rossikhina

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge