Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter L. Falkingham is active.

Publication


Featured researches published by Peter L. Falkingham.


Journal of the Royal Society Interface | 2011

The 'Goldilocks' effect: preservation bias in vertebrate track assemblages

Peter L. Falkingham; Karl T. Bates; L. Margetts; P. Manning

Finite-element analysis was used to investigate the extent of bias in the ichnological fossil record attributable to body mass. Virtual tracks were simulated for four dinosaur taxa of different sizes (Struthiomimus, Tyrannosaurus, Brachiosaurus and Edmontosaurus), in a range of substrate conditions. Outlines of autopodia were generated based upon osteology and published soft-tissue reconstructions. Loads were applied vertically to the feet equivalent to the weight of the animal, and distributed accordingly to fore- and hindlimbs where relevant. Ideal, semi-infinite elastic–plastic substrates displayed a ‘Goldilocks’ quality where only a narrow range of loads could produce tracks, given that small animals failed to indent the substrate, and larger animals would be unable to traverse the area without becoming mired. If a firm subsurface layer is assumed, a more complete assemblage is possible, though there is a strong bias towards larger, heavier animals. The depths of fossil tracks within an assemblage may indicate thicknesses of mechanically distinct substrate layers at the time of track formation, even when the lithified strata appear compositionally homogeneous. This work increases the effectiveness of using vertebrate tracks as palaeoenvironmental indicators in terms of inferring substrate conditions at the time of track formation. Additionally, simulated undertracks are examined, and it is shown that complex deformation beneath the foot may not be indicative of limb kinematics as has been previously interpreted, but instead ridges and undulations at the base of a track may be a function of sediment displacement vectors and pedal morphology.


Biology Letters | 2012

Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics

Karl T. Bates; Peter L. Falkingham

Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex. Models predict that adult T. rex generated sustained bite forces of 35 000–57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex, associated with an expansion of prey range in adults to include the largest contemporaneous animals.


PLOS ONE | 2013

Manus track preservation bias as a key factor for assessing trackmaker identity and quadrupedalism in basal ornithopods.

Diego Castanera; Bernat Vila; Novella L. Razzolini; Peter L. Falkingham; José Ignacio Canudo; P. Manning; Àngel Galobart

Background The Las Cerradicas site (Tithonian–Berriasian), Teruel, Spain, preserves at least seventeen dinosaur trackways, some of them formerly attributed to quadrupedal ornithopods, sauropods and theropods. The exposure of new track evidence allows a more detailed interpretation of the controversial tridactyl trackways as well as the modes of locomotion and taxonomic affinities of the trackmakers. Methodology/Principal Findings Detailed stratigraphic analysis reveals four different levels where footprints have been preserved in different modes. Within the tridactyl trackways, manus tracks are mainly present in a specific horizon relative to surface tracks. The presence of manus tracks is interpreted as evidence of an ornithopod trackmaker. Cross-sections produced from photogrammetric digital models show different depths of the pes and manus, suggesting covariance in loading between the forelimbs and the hindlimbs. Conclusions/Significance Several features (digital pads, length/width ratio, claw marks) of some ornithopod pes tracks from Las Cerradicas are reminiscent of theropod pedal morphology. This morphological convergence, combined with the shallow nature of the manus tracks, which reduces preservation potential, opens a new window into the interpretation of these tridactyl tracks. Thus, trackmaker assignations during the Jurassic–Cretaceous interval of purported theropod trackways may potentially represent ornithopods. Moreover, the Las Cerradicas trackways are further evidence for quadrupedalism among some basal small- to medium-sized ornithopods from this time interval.


Biology Letters | 2012

Minimum convex hull mass estimations of complete mounted skeletons

William I. Sellers; J. Hepworth-Bell; Peter L. Falkingham; Karl T. Bates; Charlotte A. Brassey; Victoria M. Egerton; P. Manning

Body mass is a critical parameter used to constrain biomechanical and physiological traits of organisms. Volumetric methods are becoming more common as techniques for estimating the body masses of fossil vertebrates. However, they are often accused of excessive subjective input when estimating the thickness of missing soft tissue. Here, we demonstrate an alternative approach where a minimum convex hull is derived mathematically from the point cloud generated by laser-scanning mounted skeletons. This has the advantage of requiring minimal user intervention and is thus more objective and far quicker. We test this method on 14 relatively large-bodied mammalian skeletons and demonstrate that it consistently underestimates body mass by 21 per cent with minimal scatter around the regression line. We therefore suggest that it is a robust method of estimating body mass where a mounted skeletal reconstruction is available and demonstrate its usage to predict the body mass of one of the largest, relatively complete sauropod dinosaurs: Giraffatitan brancai (previously Brachiosaurus) as 23200 kg.


Journal of the Royal Society Interface | 2013

Does footprint depth correlate with foot motion and pressure

Karl T. Bates; Russell Savage; Todd C. Pataky; Sarita A. Morse; Emma L. Webster; Peter L. Falkingham; L. Ren; Z. Qian; D. Collins; Matthew R. Bennett; Juliet McClymont; Robin H. Crompton

Footprints are the most direct source of evidence about locomotor biomechanics in extinct vertebrates. One of the principal suppositions underpinning biomechanical inferences is that footprint geometry correlates with dynamic foot pressure, which, in turn, is linked with overall limb motion of the trackmaker. In this study, we perform the first quantitative test of this long-standing assumption, using topological statistical analysis of plantar pressures and experimental and computer-simulated footprints. In computer-simulated footprints, the relative distribution of depth differed from the distribution of both peak and pressure impulse in all simulations. Analysis of footprint samples with common loading inputs and similar depths reveals that only shallow footprints lack significant topological differences between depth and pressure distributions. Topological comparison of plantar pressures and experimental beach footprints demonstrates that geometry is highly dependent on overall print depth; deeper footprints are characterized by greater relative forefoot, and particularly toe, depth than shallow footprints. The highlighted difference between ‘shallow’ and ‘deep’ footprints clearly emphasizes the need to understand variation in foot mechanics across different degrees of substrate compliance. Overall, our results indicate that extreme caution is required when applying the ‘depth equals pressure’ paradigm to hominin footprints, and by extension, those of other extant and extinct tetrapods.


PALAIOS | 2010

Fossil vertebrate tracks as paleopenetrometers: Confounding effects of foot morphology

Peter L. Falkingham; L. Margetts; P. Manning

Abstract The depth to which a vertebrate track is indented can provide a wealth of information, being a direct result of the weight, duty factor, and limb kinematics of the animal as well as media ( =  substrate or sediment) consistency. In order to recreate the formation of the track and elucidate media consistency at the time of track formation, such factors as animal mass, duty factor, and foot morphology must be taken into consideration. This study uses Finite Element Analysis and physical modeling to demonstrate for the first time that the shape of the foot is an important factor that influences the depth to which the sediment is penetrated. In cohesive sediment, less compact morphology allows more sediment to move vertically upwards at the edges of the foot, dissipating force at the surface, and retarding transmission of load vertically down into the sediment. The reverse of this effect is seen in noncohesive sediment. Foot morphology, therefore, has a direct impact on preservation potential, both of surface tracks and undertracks, that is irrespective of the pressure exerted on the sediment surface by the foot and independent of mass and duty factor.


Proceedings of the National Academy of Sciences of the United States of America | 2014

The birth of a dinosaur footprint: Subsurface 3D motion reconstruction and discrete element simulation reveal track ontogeny

Peter L. Falkingham; Stephen M. Gatesy

Significance We reconstructed the 3D foot movements of guineafowl traversing a granular substrate from biplanar X-rays, and then incorporated those kinematics into a discrete element simulation. Digital track models permitted visualization of in vivo track formation at the surface and at virtual bedding planes for the first time. Application of these volumetric data to fossil dinosaur tracks uncovered the developmental origin of previously enigmatic features. A “track ontogeny” perspective helps integrate limb and substrate dynamics into the interpretation of track morphology, from which foot anatomy cannot be read directly. Locomotion over deformable substrates is a common occurrence in nature. Footprints represent sedimentary distortions that provide anatomical, functional, and behavioral insights into trackmaker biology. The interpretation of such evidence can be challenging, however, particularly for fossil tracks recovered at bedding planes below the originally exposed surface. Even in living animals, the complex dynamics that give rise to footprint morphology are obscured by both foot and sediment opacity, which conceals animal–substrate and substrate–substrate interactions. We used X-ray reconstruction of moving morphology (XROMM) to image and animate the hind limb skeleton of a chicken-like bird traversing a dry, granular material. Foot movement differed significantly from walking on solid ground; the longest toe penetrated to a depth of ∼5 cm, reaching an angle of 30° below horizontal before slipping backward on withdrawal. The 3D kinematic data were integrated into a validated substrate simulation using the discrete element method (DEM) to create a quantitative model of limb-induced substrate deformation. Simulation revealed that despite sediment collapse yielding poor quality tracks at the air–substrate interface, subsurface displacements maintain a high level of organization owing to grain–grain support. Splitting the substrate volume along “virtual bedding planes” exposed prints that more closely resembled the foot and could easily be mistaken for shallow tracks. DEM data elucidate how highly localized deformations associated with foot entry and exit generate specific features in the final tracks, a temporal sequence that we term “track ontogeny.” This combination of methodologies fosters a synthesis between the surface/layer-based perspective prevalent in paleontology and the particle/volume-based perspective essential for a mechanistic understanding of sediment redistribution during track formation.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2009

Biomechanics of Dromaeosaurid Dinosaur Claws: Application of X-Ray Microtomography, Nanoindentation, and Finite Element Analysis

P. Manning; Lee Margetts; Mark R. Johnson; Philip J. Withers; William I. Sellers; Peter L. Falkingham; Paul Mummery; Paul M. Barrett; David Raymont

Dromaeosaurid theropod dinosaurs, such as Velociraptor, possess strongly recurved, hypertrophied and hyperextensible ungual claws on the pes (digit II) and manus. The morphology of these unguals has been linked to the capture and despatching of prey. However, the mechanical properties or, more importantly, the mechanical potential of these structures have not been explored. Generation of a 3D finite element (FE) stress/strain contour map of a Velociraptor manual ungual has allowed us to evaluate quantitatively the mechanical behavior of a dromaeosaurid claw for the first time. An X‐ray microtomography scan allowed construction of an accurate 3D FE mesh. Analogue material from an extant avian theropod, the pedal digit and claw of an eagle owl (Bubo bubo), was analyzed to provide input data for the Velociraptor claw FE model (FEM). The resultant FEM confirms that dromaeosaurid claws were well‐adapted for climbing as they would have been resistant to forces acting in a single (longitudinal) plane, in this case due to gravity. However, the strength of the unguals was limited with respect to forces acting tangential to the long‐axis of the claw. The tip of the claw functioned as the puncturing and gripping element of the structure, whereas the expanded proximal portion transferred the load stress through the trabeculae and cortical bone. Enhanced climbing abilities of dromaeosaurid dinosaurs supports a scansorial phase in the evolution of flight. Anat Rec, 292:1397–1405, 2009.


PLOS ONE | 2014

Intra-trackway morphological variations due to substrate consistency: the El Frontal dinosaur tracksite (lower Cretaceous, Spain).

Novella L. Razzolini; Bernat Vila; Diego Castanera; Peter L. Falkingham; José Luis Barco; José Ignacio Canudo; P. Manning; Àngel Galobart

An ichnological and sedimentological study of the El Frontal dinosaur tracksite (Early Cretaceous, Cameros basin, Soria, Spain) highlights the pronounced intra-trackway variation found in track morphologies of four theropod trackways. Photogrammetric 3D digital models revealed various and distinct intra-trackway morphotypes, which reflect changes in footprint parameters such as the pace length, the track length, depth, and height of displacement rims. Sedimentological analyses suggest that the original substrate was non-homogenous due to lateral changes in adjoining microfacies. Multidata analyses indicate that morphological differences in these deep and shallow tracks represent a part of a continuum of track morphologies and geometries produced by a gradient of substrate consistencies across the site. This implies that the large range of track morphologies at this site resulted from similar trackmakers crossing variable facies. The trackways at the El Frontal site present an exemplary case of how track morphology, and consequently potential ichnotaxa, can vary, even when produced by a single trackmaker.


Proceedings of the Royal Society B - Biological Sciences , 284 , Article 20170194. (2017) | 2017

Open data and digital morphology

Thomas Davies; Imran A. Rahman; Stephan Lautenschlager; John A. Cunningham; Robert J. Asher; Paul M. Barrett; Karl T. Bates; Stefan Bengtson; Roger B. J. Benson; Doug M. Boyer; José Braga; Jen A. Bright; Leon P. A. M. Claessens; Philip G. Cox; Xi-Ping Dong; Alistair R. Evans; Peter L. Falkingham; Matt Friedman; Russell J. Garwood; Anjali Goswami; John R. Hutchinson; Nathan Jeffery; Zerina Johanson; Renaud Lebrun; Carlos Martínez-Pérez; Jesús Marugán-Lobón; Paul O'Higgins; Brian D. Metscher; Maeva J. Orliac; Timothy Rowe

Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.

Collaboration


Dive into the Peter L. Falkingham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee Margetts

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Hodgetts

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Bernat Vila

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge