Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter L. Oliver is active.

Publication


Featured researches published by Peter L. Oliver.


Nature | 2011

Mouse genomic variation and its effect on phenotypes and gene regulation.

Thomas M. Keane; Leo Goodstadt; Petr Danecek; Michael A. White; Kim Wong; Binnaz Yalcin; Andreas Heger; Avigail Agam; Guy Slater; Martin Goodson; N A Furlotte; Eleazar Eskin; Christoffer Nellåker; H Whitley; James Cleak; Deborah Janowitz; Polinka Hernandez-Pliego; Andrew Edwards; T G Belgard; Peter L. Oliver; Rebecca E McIntyre; Amarjit Bhomra; Jérôme Nicod; Xiangchao Gan; Wei Yuan; L van der Weyden; Charles A. Steward; Sendu Bala; Jim Stalker; Richard Mott

We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.


The New England Journal of Medicine | 2008

A functional genetic link between distinct developmental language disorders.

Sonja C. Vernes; Dianne F. Newbury; Brett S. Abrahams; Laura Winchester; Jérôme Nicod; Matthias Groszer; Maricela Alarcón; Peter L. Oliver; Kay E. Davies; Daniel H. Geschwind; Anthony P. Monaco; Simon E. Fisher

BACKGROUND Rare mutations affecting the FOXP2 transcription factor cause a monogenic speech and language disorder. We hypothesized that neural pathways downstream of FOXP2 influence more common phenotypes, such as specific language impairment. METHODS We performed genomic screening for regions bound by FOXP2 using chromatin immunoprecipitation, which led us to focus on one particular gene that was a strong candidate for involvement in language impairments. We then tested for associations between single-nucleotide polymorphisms (SNPs) in this gene and language deficits in a well-characterized set of 184 families affected with specific language impairment. RESULTS We found that FOXP2 binds to and dramatically down-regulates CNTNAP2, a gene that encodes a neurexin and is expressed in the developing human cortex. On analyzing CNTNAP2 polymorphisms in children with typical specific language impairment, we detected significant quantitative associations with nonsense-word repetition, a heritable behavioral marker of this disorder (peak association, P=5.0x10(-5) at SNP rs17236239). Intriguingly, this region coincides with one associated with language delays in children with autism. CONCLUSIONS The FOXP2-CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language.


Cell | 2007

Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans

David A. Keays; Guoling Tian; Karine Poirier; Guo-Jen Huang; Christian Siebold; James Cleak; Peter L. Oliver; Martin Fray; Robert J. Harvey; Zoltán Molnár; Maria Carmen Piñon; Neil Dear; William Valdar; Steve D.M. Brown; Kay E. Davies; J. Nicholas P. Rawlins; Nicholas J. Cowan; Patrick M. Nolan; Jamel Chelly; Jonathan Flint

Summary The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders.


PLOS Genetics | 2009

Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain.

Jasmina Ponjavic; Peter L. Oliver; Gerton Lunter; Chris P. Ponting

Besides protein-coding mRNAs, eukaryotic transcriptomes include many long non-protein-coding RNAs (ncRNAs) of unknown function that are transcribed away from protein-coding loci. Here, we have identified 659 intergenic long ncRNAs whose genomic sequences individually exhibit evolutionary constraint, a hallmark of functionality. Of this set, those expressed in the brain are more frequently conserved and are significantly enriched with predicted RNA secondary structures. Furthermore, brain-expressed long ncRNAs are preferentially located adjacent to protein-coding genes that are (1) also expressed in the brain and (2) involved in transcriptional regulation or in nervous system development. This led us to the hypothesis that spatiotemporal co-expression of ncRNAs and nearby protein-coding genes represents a general phenomenon, a prediction that was confirmed subsequently by in situ hybridisation in developing and adult mouse brain. We provide the full set of constrained long ncRNAs as an important experimental resource and present, for the first time, substantive and predictive criteria for prioritising long ncRNA and mRNA transcript pairs when investigating their biological functions and contributions to development and disease.


Neuron | 2011

A Transcriptomic Atlas of Mouse Neocortical Layers

T. Grant Belgard; Ana C. Marques; Peter L. Oliver; Hatice Ozel Abaan; Tamara Sirey; Anna Hoerder-Suabedissen; Fernando García-Moreno; Zoltán Molnár; Elliott H. Margulies; Chris P. Ponting

Summary In the mammalian cortex, neurons and glia form a patterned structure across six layers whose complex cytoarchitectonic arrangement is likely to contribute to cognition. We sequenced transcriptomes from layers 1-6b of different areas (primary and secondary) of the adult (postnatal day 56) mouse somatosensory cortex to understand the transcriptional levels and functional repertoires of coding and noncoding loci for cells constituting these layers. A total of 5,835 protein-coding genes and 66 noncoding RNA loci are differentially expressed (“patterned”) across the layers, on the basis of a machine-learning model (naive Bayes) approach. Layers 2-6b are each associated with specific functional and disease annotations that provide insights into their biological roles. This new resource (http://genserv.anat.ox.ac.uk/layers) greatly extends currently available resources, such as the Allen Mouse Brain Atlas and microarray data sets, by providing quantitative expression levels, by being genome-wide, by including novel loci, and by identifying candidate alternatively spliced transcripts that are differentially expressed across layers.


Genome Biology | 2010

Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes

Rebecca A. Chodroff; Leo Goodstadt; Tamara Sirey; Peter L. Oliver; Kay E. Davies; Eric D. Green; Zoltán Molnár; Chris P. Ponting

BackgroundLong considered to be the building block of life, it is now apparent that protein is only one of many functional products generated by the eukaryotic genome. Indeed, more of the human genome is transcribed into noncoding sequence than into protein-coding sequence. Nevertheless, whilst we have developed a deep understanding of the relationships between evolutionary constraint and function for protein-coding sequence, little is known about these relationships for non-coding transcribed sequence. This dearth of information is partially attributable to a lack of established non-protein-coding RNA (ncRNA) orthologs among birds and mammals within sequence and expression databases.ResultsHere, we performed a multi-disciplinary study of four highly conserved and brain-expressed transcripts selected from a list of mouse long intergenic noncoding RNA (lncRNA) loci that generally show pronounced evolutionary constraint within their putative promoter regions and across exon-intron boundaries. We identify some of the first lncRNA orthologs present in birds (chicken), marsupial (opossum), and eutherian mammals (mouse), and investigate whether they exhibit conservation of brain expression. In contrast to conventional protein-coding genes, the sequences, transcriptional start sites, exon structures, and lengths for these non-coding genes are all highly variable.ConclusionsThe biological relevance of lncRNAs would be highly questionable if they were limited to closely related phyla. Instead, their preservation across diverse amniotes, their apparent conservation in exon structure, and similarities in their pattern of brain expression during embryonic and early postnatal stages together indicate that these are functional RNA molecules, of which some have roles in vertebrate brain development.


PLOS Genetics | 2011

Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in the Developing Brain

Sonja C. Vernes; Peter L. Oliver; Elizabeth Spiteri; Helen Lockstone; Rathi Puliyadi; Jennifer M. Taylor; Joses Ho; Cedric Mombereau; Ariel Brewer; Ernesto Lowy; Jérôme Nicod; Matthias Groszer; Dilair Baban; Natasha Sahgal; Jean-Baptiste Cazier; Jiannis Ragoussis; Kay E. Davies; Daniel H. Geschwind; Simon E. Fisher

Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP–chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice

Esther B. E. Becker; Peter L. Oliver; Maike D. Glitsch; Gareth Banks; Francesca Achilli; Andrea Hardy; Patrick M. Nolan; Elizabeth M. C. Fisher; Kay E. Davies

The hereditary ataxias are a complex group of neurological disorders characterized by the degeneration of the cerebellum and its associated connections. The molecular mechanisms that trigger the loss of Purkinje cells in this group of diseases remain incompletely understood. Here, we report a previously undescribed dominant mouse model of cerebellar ataxia, moonwalker (Mwk), that displays motor and coordination defects and loss of cerebellar Purkinje cells. Mwk mice harbor a gain-of-function mutation (T635A) in the Trpc3 gene encoding the nonselective transient receptor potential cation channel, type C3 (TRPC3), resulting in altered TRPC3 channel gating. TRPC3 is highly expressed in Purkinje cells during the phase of dendritogenesis. Interestingly, growth and differentiation of Purkinje cell dendritic arbors are profoundly impaired in Mwk mice. Our findings define a previously unknown role for TRPC3 in both dendritic development and survival of Purkinje cells, and provide a unique mechanism underlying cerebellar ataxia.


Journal of Biological Chemistry | 2006

Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells.

Yanyan Jiang; Peter L. Oliver; Kay E. Davies; Nick Platt

Epithelia are positioned at a critical interface to prevent invasion by microorganisms from the environment. Pattern recognition receptors are important components of innate immunity because of their ability to interact with specific microbe-associated structures and initiate immune responses. Several distinct groups of receptors have been recognized. One of these, the scavenger receptors, has been classified into at least eight separate classes. The class A scavenger receptors are characterized by the presence of a collagen-like domain and include macrophage scavenger receptor type A (SR-A1 I/II, SCARA1) and MARCO (SCARA2). These receptors are known to make important contributions to host defense. Here, we identify a novel murine scavenger receptor, SCARA5, which has a structure typical of this class. The cDNA encodes 491 amino acids, which predict a type II protein that contains C-terminal intracellular, transmembrane, extracellular spacer, collagenous, and N-terminal scavenger receptor cysteine rich domains. Expression in Chinese hamster ovary cells confirmed that the receptor assembles as a homotrimer and is expressed at the plasma membrane. SCARA5-transfected cells bound Escherichia coli and Staphylococcus aureus, but not zymosan, in a polyanionic-inhibitable manner. Unlike other class A scavenger receptors, the receptor was unable to endocytose acetylated or oxidized low density lipoprotein. Quantitative RT-PCR and in situ hybridization demonstrate SCARA5 has a tissue and cellular distribution unique among class A scavenger receptors. Because of the restriction of SCARA5 transcripts to populations of epithelial cells, we propose that this receptor may play important roles in the innate immune activities of these cells.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse.

Alexander Jeans; Peter L. Oliver; Reuben Johnson; Marco Capogna; Jenny Vikman; Zoltán Molnár; Arran Babbs; Christopher J. Partridge; Albert Salehi; Martin Bengtsson; Lena Eliasson; Patrik Rorsman; Kay E. Davies

The neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is essential for synaptic vesicle exocytosis, but its study has been limited by the neonatal lethality of murine SNARE knockouts. Here, we describe a viable mouse line carrying a mutation in the b-isoform of neuronal SNARE synaptosomal-associated protein of 25 kDa (SNAP-25). The causative I67T missense mutation results in increased binding affinities within the SNARE complex, impaired exocytotic vesicle recycling and granule exocytosis in pancreatic β-cells, and a reduction in the amplitude of evoked cortical excitatory postsynaptic potentials. The mice also display ataxia and impaired sensorimotor gating, a phenotype which has been associated with psychiatric disorders in humans. These studies therefore provide insights into the role of the SNARE complex in both diabetes and psychiatric disease.

Collaboration


Dive into the Peter L. Oliver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge