Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter L. Strick is active.

Publication


Featured researches published by Peter L. Strick.


Annual Review of Neuroscience | 2009

Cerebellum and Nonmotor Function

Peter L. Strick; Richard P. Dum; Julie A. Fiez

Does the cerebellum influence nonmotor behavior? Recent anatomical studies demonstrate that the output of the cerebellum targets multiple nonmotor areas in the prefrontal and posterior parietal cortex, as well as the cortical motor areas. The projections to different cortical areas originate from distinct output channels within the cerebellar nuclei. The cerebral cortical area that is the main target of each output channel is a major source of input to the channel. Thus, a closed-loop circuit represents the major architectural unit of cerebro-cerebellar interactions. The outputs of these loops provide the cerebellum with the anatomical substrate to influence the control of movement and cognition. Neuroimaging and neuropsychological data supply compelling support for this view. The range of tasks associated with cerebellar activation is remarkable and includes tasks designed to assess attention, executive control, language, working memory, learning, pain, emotion, and addiction. These data, along with the revelations about cerebro-cerebellar circuitry, provide a new framework for exploring the contribution of the cerebellum to diverse aspects of behavior.


Nature Neuroscience | 2005

The cerebellum communicates with the basal ganglia

Eiji Hoshi; Léon Tremblay; Jean Féger; Peter L Carras; Peter L. Strick

The cerebral cortex is interconnected with two major subcortical structures: the basal ganglia and the cerebellum. How and where cerebellar circuits interact with basal ganglia circuits has been a longstanding question. Using transneuronal transport of rabies virus in macaques, we found that a disynaptic pathway links an output stage of cerebellar processing, the dentate nucleus, with an input stage of basal ganglia processing, the striatum.


Physiology & Behavior | 2002

Motor areas in the frontal lobe of the primate.

Richard P. Dum; Peter L. Strick

There has been a substantial change in our concepts about the cortical motor areas. It is now clear that the frontal lobe of primates contains at least six premotor areas that project directly to the primary motor cortex (M1). Two premotor areas, the ventral premotor area (PMv) and the dorsal premotor area (PMd), are located on the lateral surface of the hemisphere. Four premotor areas are located on the medial wall of the hemisphere and include the supplementary motor area (SMA) and three cingulate motor areas. Each of these premotor areas has substantial direct projections to the spinal cord. Corticospinal axons from the premotor areas terminate in the intermediate zone of the spinal cord, and some also terminate in the ventral horn around motoneurons. In this respect, the premotor areas are like M1 and appear to have direct connections with spinal motoneurons, particularly those innervating hand muscles. Furthermore, it is possible to evoke movements of the distal and proximal forelimb using intracortical stimulation at relatively low currents in the premotor areas. Thus, the premotor areas appear to have the potential to influence the control of movement not only at the level of M1, but also more directly at the level of the spinal cord. For these reasons, we have suggested that the premotor areas may operate at a hierarchical level comparable to M1. We propose that each premotor area is a functionally distinct efferent system that differentially generates and/or controls specific aspects of motor behavior.


The Journal of Neuroscience | 2001

The Inferior Parietal Lobule Is the Target of Output from the Superior Colliculus, Hippocampus, and Cerebellum

Dottie M. Clower; Robert A. West; James C. Lynch; Peter L. Strick

The inferior parietal lobule (IPL) is a functionally and anatomically heterogeneous region that is concerned with multiple aspects of sensory processing and sensorimotor integration. Although considerable information is available about the corticocortical connections to the IPL, much less is known about the origin and importance of subcortical inputs to this cortical region. To examine this issue, we used retrograde transneuronal transport of the McIntyre-B strain of herpes simplex virus type 1 (HSV1) to identify the second-order neurons in subcortical nuclei that project to the IPL. Four monkeys (Cebus apella) received injections of HSV1 into three different subregions of the IPL. Injections into a portion of the lateral intraparietal area labeled second-order neurons primarily in the superficial (visual) layers of the superior colliculus. Injections of HSV1 into a portion of area 7a labeled many second-order neurons in the CA1 region of the hippocampus. In contrast, virus injections within a portion of area 7b labeled second-order neurons in posterior regions of the dentate nucleus of the cerebellum. These observations have some important functional implications. The IPL is known to be involved in oculomotor and attentional mechanisms, the establishment of maps of extrapersonal space, and the adaptive recalibration of eye–hand coordination. Our findings suggest that these functions are subserved by distinct subcortical systems from the superior colliculus, hippocampus, and cerebellum. Furthermore, the finding that each system appears to target a separate subregion of the IPL provides an anatomical substrate for understanding the functional heterogeneity of the IPL.


Proceedings of the National Academy of Sciences of the United States of America | 2010

The basal ganglia communicate with the cerebellum

Andreea C. Bostan; Richard P. Dum; Peter L. Strick

The basal ganglia and cerebellum are major subcortical structures that influence not only movement, but putatively also cognition and affect. Both structures receive input from and send output to the cerebral cortex. Thus, the basal ganglia and cerebellum form multisynaptic loops with the cerebral cortex. Basal ganglia and cerebellar loops have been assumed to be anatomically separate and to perform distinct functional operations. We investigated whether there is any direct route for basal ganglia output to influence cerebellar function that is independent of the cerebral cortex. We injected rabies virus (RV) into selected regions of the cerebellar cortex in cebus monkeys and used retrograde transneuronal transport of the virus to determine the origin of multisynaptic inputs to the injection sites. We found that the subthalamic nucleus of the basal ganglia has a substantial disynaptic projection to the cerebellar cortex. This pathway provides a means for both normal and abnormal signals from the basal ganglia to influence cerebellar function. We previously showed that the dentate nucleus of the cerebellum has a disynaptic projection to an input stage of basal ganglia processing, the striatum. Taken together these results provide the anatomical substrate for substantial two-way communication between the basal ganglia and cerebellum. Thus, the two subcortical structures may be linked together to form an integrated functional network.


The Journal of Neuroscience | 2005

Frontal Lobe Inputs to the Digit Representations of the Motor Areas on the Lateral Surface of the Hemisphere

Richard P. Dum; Peter L. Strick

We examined the frontal lobe connections of the digit representations in the primary motor cortex (M1), the dorsal premotor area (PMd), and the ventral premotor area (PMv) of cebus monkeys. All of these digit representations lie on the lateral surface of the hemisphere. We used intracortical stimulation to identify the digit representations physiologically, and then we injected different tracers into two of the three cortical areas. This approach enabled us to compare the inputs to two digit representations in the same animal. We found that the densest inputs from the premotor areas to the digit representation in M1 originate from the PMd and the PMv. Both of these premotor areas contain a distinct digit representation, and the two digit representations are densely interconnected. Surprisingly, the projections from the digit representation in the supplementary motor area (SMA) to the PMd and PMv are stronger than the SMA projections to M1. The projections from other premotor areas to M1, the PMd, and the PMv are more modest. Of the three digit areas on the lateral surface, only the PMv receives dense input from the prefrontal cortex. Based on these results, we believe that M1, the PMd, and the PMv form a densely interconnected network of cortical areas that is concerned with the generation and control of hand movements. Overall, the laminar origins of neurons that interconnect the three cortical areas are typical of “lateral” interactions. Thus, from an anatomical perspective, this cortical network lacks a clear hierarchical organization.


The Journal of Neuroscience | 1999

The Organization of Cerebellar and Basal Ganglia Outputs to Primary Motor Cortex as Revealed by Retrograde Transneuronal Transport of Herpes Simplex Virus Type 1

John E. Hoover; Peter L. Strick

We used retrograde transneuronal transport of herpes simplex virus type 1 to map the origin of cerebellar and basal ganglia “projections” to leg, arm, and face areas of the primary motor cortex (M1). Four to five days after virus injections into M1, we observed many densely labeled neurons in localized regions of the output nuclei of the cerebellum and basal ganglia. The largest numbers of these neurons were found in portions of the dentate nucleus and the internal segment of the globus pallidus (GPi). Smaller numbers of labeled neurons were found in portions of the interpositus nucleus and the substantia nigra pars reticulata. The distribution of neuronal labeling varied with the cortical injection site. For example, within the dentate, neurons labeled from leg M1 were located rostrally, those from face M1 caudally, and those from arm M1 at intermediate levels. In each instance, labeled neurons were confined to approximately the dorsal third of the nucleus. Within GPi, neurons labeled from leg M1 were located in dorsal and medial regions, those from face M1 in ventral and lateral regions, and those from arm M1 in intermediate regions. These results demonstrate that M1 is the target of somatotopically organized outputs from both the cerebellum and basal ganglia. Surprisingly, the projections to M1 originate from only 30% of the volume of the dentate and <15% of GPi. Thus, the majority of the outputs from the cerebellum and basal ganglia are directed to cortical areas other than M1.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Subdivisions of primary motor cortex based on cortico-motoneuronal cells

Jean-Alban Rathelot; Peter L. Strick

We used retrograde transneuronal transport of rabies virus from single muscles of rhesus monkeys to identify cortico-motoneuronal (CM) cells in the primary motor cortex (M1) that make monosynaptic connections with motoneurons innervating shoulder, elbow, and finger muscles. We found that M1 has 2 subdivisions. A rostral region lacks CM cells and represents an “old” M1 that is the standard for many mammals. The descending commands mediated by corticospinal efferents from old M1 must use the integrative mechanisms of the spinal cord to generate motoneuron activity and motor output. In contrast, a caudal region of M1 contains shoulder, elbow, and finger CM cells. This region represents a “new” M1 that is present only in some higher primates and humans. The direct access to motoneurons afforded by CM cells enables the newly recognized M1 to bypass spinal cord mechanisms and sculpt novel patterns of motor output that are essential for highly skilled movements.


Trends in Cognitive Sciences | 2013

Cerebellar networks with the cerebral cortex and basal ganglia

Andreea C. Bostan; Richard P. Dum; Peter L. Strick

The dominant view of cerebellar function has been that it is exclusively concerned with motor control and coordination. Recent findings from neuroanatomical, behavioral, and imaging studies have profoundly changed this view. Neuroanatomical studies using virus transneuronal tracers have demonstrated that cerebellar output reaches vast areas of the neocortex, including regions of prefrontal and posterior parietal cortex. Furthermore, it has recently become clear that the cerebellum is reciprocally connected with the basal ganglia, which suggests that the two subcortical structures are part of a densely interconnected network. Taken together, these findings elucidate the neuroanatomical substrate for cerebellar involvement in non-motor functions mediated by the prefrontal and posterior parietal cortex, as well as in processes traditionally associated with the basal ganglia.


The Journal of Neuroscience | 2007

Supplementary Motor Area and Presupplementary Motor Area: Targets of Basal Ganglia and Cerebellar Output

Dalila Akkal; Richard P. Dum; Peter L. Strick

We used retrograde transneuronal transport of neurotropic viruses in Cebus monkeys to examine the organization of basal ganglia and cerebellar projections to two cortical areas on the medial wall of the hemisphere, the supplementary motor area (SMA) and the pre-SMA. We found that both of these cortical areas are the targets of disynaptic projections from the dentate nucleus of the cerebellum and from the internal segment of the globus pallidus (GPi). On average, the number of pallidal neurons that project to the SMA and pre-SMA is approximately three to four times greater than the number of dentate neurons that project to these cortical areas. GPi neurons that project to the pre-SMA are located in a rostral, “associative” territory of the nucleus, whereas GPi neurons that project to the SMA are located in a more caudal and ventral “sensorimotor” territory. Similarly, dentate neurons that project to the pre-SMA are located in a ventral, “nonmotor” domain of the nucleus, whereas dentate neurons that project to the SMA are located in a more dorsal, “motor” domain. The differential origin of subcortical projections to the SMA and pre-SMA suggests that these cortical areas are nodes in distinct neural systems. Although both systems are the target of outputs from the basal ganglia and the cerebellum, these two cortical areas seem to be dominated by basal ganglia input.

Collaboration


Dive into the Peter L. Strick's collaboration.

Top Co-Authors

Avatar

Richard P. Dum

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Donna S. Hoffman

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James B. Preston

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jm Guest

Center of Advanced European Studies and Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge