Peter Lienemann
Swiss Federal Laboratories for Materials Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Lienemann.
Environmental Science & Technology | 2009
Nicolas Bukowiecki; Peter Lienemann; Matthias Hill; Renato Figi; A. Richard; Markus Furger; Karen Rickers; Gerald Falkenberg; Yongjing Zhao; Steven S. Cliff; André S. H. Prévôt; Urs Baltensperger; Brigitte Buchmann; Robert Gehrig
Hourly trace element measurements were performed in an urban street canyon and next to an interurban freeway in Switzerland during more than one month each, deploying a rotating drum impactor (RDI) and subsequent sample analysis by synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). Antimony and other brake wear associated elements were detected in three particle size ranges (2.5-10, 1-2.5, and 0.1-1 microm). The hourly measurements revealed that the effect of resuspended road dust has to be taken into account for the calculation of vehicle emission factors. Individual values for light and heavy duty vehicles were obtained for stop-and-go traffic in the urban street canyon. Mass based brake wear emissions were predominantly found in the coarse particle fraction. For antimony, determined emission factors were 11 +/- 7 and 86 +/- 42 microg km(-1) vehicle(-1) for light and heavy duty vehicles, respectively. Antimony emissions along the interurban freeway with free-flowing traffic were significantly lower. Relative patterns for brake wear related elements were very similar for both considered locations. Beside vehicle type specific brake wear emissions, road dust resuspension was found to be a dominant contributor of antimony in the street canyon.
Environmental Science & Technology | 2012
Norbert V. Heeb; Daniel Zindel; Birgit Geueke; Hans-Peter E. Kohler; Peter Lienemann
Hexabromocyclododecanes (HBCDs) and hexachlorocyclohexanes (HCHs) are polyhalogenated hydrocarbons with similar stereochemistry. Both classes of compounds are considered biologically persistent and bioaccumulating pollutants. In 2009, the major HCH stereoisomers came under regulation of the Stockholm convention. Despite their persistence, HCHs are susceptible to bacterial biotransformations. Here we show that LinB, an HCH-converting haloalkane dehalogenase from Sphingobium indicum B90A, is also able to transform HBCDs. Racemic mixtures of α-, β-, and γ-HBCDs were exposed to LinB under various conditions. All stereoisomers were converted, but (-)α-, (+)β-, and (+)γ-HBCDs were transformed faster by LinB than their enantiomers. The enantiomeric excess increased to 8 ± 4%, 27 ± 1%, and 20 ± 2% in 32 h comparable to values of 7.1%, 27.0%, and 22.9% as obtained from respective kinetic models. Initially formed pentabromocyclododecanols (PBCDOHs) were further transformed to tetrabromocyclododecadiols (TBCDDOHs). At least, seven mono- and five dihydroxylated products were distinguished by LC-MS so far. The widespread occurrence of HCHs has led to the evolution of bacterial degradation pathways for such compounds. It remains to be shown if LinB-catalyzed HBCD transformations in vitro can also be observed in vivo, for example, in contaminated soils or in other words if such HBCD biotransformations are important environmental processes.
Talanta | 2005
Davide Bleiner; Peter Lienemann; Heinz Vonmont
Laser ablation in combination with plasma spectrochemistry is an ideal technique for depth profiling analysis, based on signal profiles. However, signal profiles were found to be critically influenced by the characteristics of the ablated particles, especially their composition and size distribution, and consequently transport mechanism and plasma-assisted vaporization efficiency. Even for a refractory material like ceramic, relics of melting following laser irradiation were found, so that particles were non-stoichiometric as compared to the parent material. Estimates of transport efficiency showed that this is highly variable as a function of particle size. Large particles are likely to be lost in the sample chamber. Fine particles are prone to wall reaction, especially in Ar ambient. Variability in particle delivery to the ICP-MS was suspected to be the cause for an element-dependent analyte signal response. Fluctuation in particle vaporization degree as a consequence of plasma temperature instability was also responsible for element-dependent signal profile deviation. However, for a 10-fold higher mass load into the plasma, no direct fractionation effects were observed. Differential transport of chemically-differentiated analyte-carriers is suggested to be primary cause for element-dependent signal structure.
Analytica Chimica Acta | 2010
Renato Figi; Oliver Nagel; M. Tuchschmid; Peter Lienemann; Urs Gfeller; Nicolas Bukowiecki
Two extraction procedures for ecologically relevant elements present in automotive brake linings (Sb, Bi, Pb, Cd, Cr (total), Co, Cu, Mo, Ni, Sr, V, Zn, Sn) were developed and validated, applying a high pressure asher (HPA-S) and microwave extraction, respectively. Both of these methods allowed for the quantitative analysis of the extracted elements by inductively coupled plasma optical emission spectrometry (ICP-OES). The results were compared to measurements using a handheld energy-dispersive X-ray fluorescence spectrometer (ED-XRF), being in discussion by regulating agencies as in-situ screening tool for brake pads. The comparison indicates that the handheld ED-XRF analysis is basically an efficient screening tool for a reliable assessment of trace metal contents in automotive brake pads with respect to legal standards. While a quantitative determination of elements like Cd, Co, Cr, Mn, Mo, Ni, Pb and Sb was achievable, other elements (V, Cu, Bi, Zn, Sn and Sr) could only be determined qualitatively due to the special matrix characteristics of brake pads.
Chemosphere | 2014
Markus Zennegg; Mathias Schluep; Martin Streicher-Porte; Peter Lienemann; Regula Haag; Andreas C. Gerecke
The increasing volumes of waste electrical and electronic equipment (WEEE) in Europe and developing economies demand for efficient disposal solutions. However, WEEE also contains toxic compounds and, therefore, there is a need for recycling technologies for WEEE that creates revenue without causing environmental harm. Among other fast developing economies, South Africa is tempting to make use of recycled plastic. Brominated flame retardants (BFRs) are additives used to protect plastic materials in electrical and electronic equipment (EEE) against ignition. Some BFRs are known persistent organic pollutants (POPs) and some BFRs can be transformed into highly toxic compounds such as polybrominated dibenzofurans and dioxins (PBDD/Fs). In this study, the contents of critical BFRs, i.e. polybrominated diphenyl ethers, and highly toxic PBDD/Fs were measured in WEEE material from Switzerland and South Africa. The formation of PBDD/Fs has been observed in two South African recycling processes and under controlled laboratory conditions. Total PBDE-contents in the South African and Swiss plastic waste varied between 1×10(3) and 7×10(6) μg kg(-1). A few WEEE plastic fractions exceeded the RoHS limit of 1×10(6) μg kg(-1) for PBDEs and thus they could not be used for recycling products without special treatment. The total content of ∑PBDFs was around 1×10(3) μg kg(-1). Such contents in materials do not pose a risk for consumer under normal conditions. Workers at recycling plants might be at risk. The measured formation rates of PBDFs were between 2×10(-5) and 2×10(-4)∑PBDE(-1) min(-1).
Journal of Analytical Atomic Spectrometry | 2003
Davide Bleiner; Peter Lienemann; Andrea Ulrich; Heinz Vonmont; Adrian Wichser
Fuel cell cathodes can be constructed as a stack of perovskite layers whose composition gradually changes over a few hundreds of µm. They are prepared by sintering a mixture of two ceramic powders (Mn-perovskite and Co-perovskite), where the proportions of the mixture contributes to the chemical gradation. Laser ablation-ICP-MS permitted the determination of the proportions of Mn-perovskite and Co-perovskite, in several depth profiles. The set-up and the laser operating conditions were specifically optimised so that correct elemental concentration profiles could be acquired, without beam induced artefacts. Lateral resolution below 100 µm and a depth resolution of 0.1–0.2 µm were obtained. Quantification was carried out from the proportions of the mixture of perovskites and the elemental composition of the individual perovskites (i.e., a “weighted summation”). The composition of the powder was previously determined via digestion and ICP-MS. Comparison with semi-quantitative data from SEM-EDX showed that the developed method provided reliable responses. Analysis of the signal structure of the depth profiles was performed by means of signal convolution and numerical differentiation. The occurrence of differential bands in conjugate pairs could be assessed and used for a realistic description of the sample structure. The fluctuation of analyte concentrations at low level (<1 µm) suggests that further improvements in the sampling thickness might conflict with robust and powerful quantification. Therefore, the determined pulse-related depth resolution of 100–200 nm seems to be a good compromise between spatially resolved analysis and quantification capability. The rapidity, flexibility and detection power of LA-ICP-MS are advantages that integrate and extend the analytical capabilities of other well-established beam-assisted techniques (i.e., XPS, AES, SIMS, SNMS, GD-OES/MS, SEM-EDX) and permit critical control of the quality of the fabricated products.
Aquatic Sciences | 2001
Erich Wieland; Peter Lienemann; Silvia. Bollhalder; Alfred Lück; Peter H. Santschi
Abstract: Time- and space-dependent variations in the composition of settling particles were investigated along a longitudinal transect in Lower Lake Zurich. The study was carried out during summer stratification using a two-dimensional array of sediment traps deployed in the hypolimnion. Samples of the sedimentary material were analysed for total C and total N, P, Ca, Si, Al, Fe, Mn, Mg, Na, K, and the trace elements Zr, Sr, Rb, Ti, Ba, S, Pb and Zn. The elements can be classified according to their preferences in associating with a specific carrier phase. The fluxes and composition of trapped particles were found to vary seasonally with fluctuations in the main components (organic matter, calcium carbonate, biogenic silica, manganese and iron oxides, silicates) and spatially due to the following in-lake processes: 1) increasing vertical particle transport of biomass and mineralic material in the shoreward direction, 2) lateral sediment transport, which caused sediment accumulation rates to increase with depth, leading to sediment focusing, 3) episodic and patchy events of CaCO3 precipitation in the epilimnion followed by sedimentation and lateral dispersion, and 4) formation of a patchy nepheloid layer in the slightly denser bottom waters containing more fine-grained particles in suspension. Sediment focusing by lateral pathways caused by particle transport between the southern and the northern basin of Lower Lake Zurich gave rise to post-depositional in-lake redistribution of particle-bound contaminants.
Chemosphere | 2014
Norbert V. Heeb; Simon A. Wyss; Birgit Geueke; Thomas Fleischmann; Hans-Peter E. Kohler; Peter Lienemann
Hexabromocyclododecanes (HBCDs) and hexachlorocyclohexanes (HCHs) are lipophilic, polyhalogenated hydrocarbons with comparable stereochemistry. Bacterial evolution in HCH-contaminated soils resulted in the development of several Spingomonadaceae which express a series of HCH-converting enzymes. We showed that LinB, a haloalkane dehalogenase from Sphingobium indicum B90A, also transforms various HBCDs besides HCHs. Here we present evidence that LinA2, another dehalogenase from S. indicum also converts certain HBCDs to pentabromocyclododecenes (PBCDEs). Racemic mixtures of α-, β-, γ-HBCDs, a mixture of them, and δ-HBCD, a meso form, were exposed to LinA2. Substantial conversion of (-)β-HBCD was observed, but all other stereoisomers were not transformed significantly. The enantiomeric excess (EE) of β-HBCDs increased up to 60% in 32 h, whereas EE values of α- and γ-HBCDs were not affected. Substrate conversion and product formation were described with second-order kinetic models. One major (P1β) and possibly two minor (P2β, P3β) metabolites were detected. Respective mass spectra showed the characteristic isotope pattern of PBCDEs, the HBr elimination products of HBCDs. Michaelis-Menten parameters KM=0.47 ± 0.07 μM and vmax=0.17 ± 0.01 μmoll(-1)h(-1) were deduced from exposure data with varying enzyme/substrate ratios. LinA2 is more substrate specific than LinB, the latter converted all tested HBCDs, LinA2 only one. The widespread HCH pollution favored the selection and evolution of bacteria converting these compounds. We found that LinA2 and LinB, two of these HCH-converting enzymes expressed in S. indicum B90A, also dehalogenate HBCDs to lower brominated compounds, indicating that structural similarities of both classes of compounds are recognized at the level of substrate-protein interactions.
Analytical Chemistry | 2017
Lena Schinkel; Sandro Lehner; Norbert V. Heeb; Peter Lienemann; Kristopher McNeill; Christian Bogdal
Chlorinated paraffins (CPs) are high production volume chemicals and ubiquitous environmental contaminants. CPs are produced and used as complex mixtures of polychlorinated n-alkanes containing thousands of isomers, leading to demanding analytical challenges. Due to their high degree of chlorination, CPs have highly complex isotopic mass patterns that often overlap, even when applying high resolution mass spectrometry. This is further complicated in the presence of degradation products such as chlorinated alkenes (CP-enes). CP-enes are formed by dehydrochlorination of CPs and are expected thermal degradation products in some applications of CPs, for example, as metal working fluids. A mathematical method is presented that allows deconvolution of the strongly interfered measured isotope clusters into linear combinations of isotope clusters of CPs and CP-enes. The analytical method applied was direct liquid injection into an atmospheric pressure chemical ionization source, followed by quadrupole time-of-flight mass spectrometry (APCI-qTOF-MS), operated in full scan negative ion mode. The mathematical deconvolution method was successfully applied to a thermally aged polychlorinated tridecane formulation (Cl5-Cl9). Deconvolution of mass patterns allowed quantifying fractions of interfering CPs and CP-enes. After exposure to 220 °C for 2, 4, 8, and 24 h, fractions of CP-enes within the respective interfering clusters increased from 0-3% at 0 h up to 37-44% after 24 h. It was shown that thermolysis of CPs follows first-order kinetics. The presented deconvolution method allows CP degradation studies with mass resolution lower than 20000 and is therefore a good alternative when higher resolution is not available.
Aerosol Science and Technology | 2009
Nicolas Bukowiecki; A. Richard; Markus Furger; E. Weingartner; Myriam H. Aguirre; Thomas Huthwelker; Peter Lienemann; Robert Gehrig; Urs Baltensperger
Rotating drum impactors (RDI) are cascade type impactors used for size and time resolved aerosol sampling, mostly followed by spectrometric analysis of the deposited material. They are characterized by one rectangular nozzle per stage and are equipped with an automated stepping mechanism for the impaction wheels. An existing three-stage rotating drum impactor was modified, to obtain new midpoint cutoff diameters at 2.5 μm, 1 μm, and 0.1 μm, respectively. For RDI samples collected under ambient air conditions, information on the size-segregation and the spatial uniformity of the deposited particles are key factors for a reliable spectrometric analysis of the RDI deposits. Two aerodynamic particle sizers (APS) were used for the determination of the RDI size fractionation characteristics, using polydisperse laboratory room air as quasi-stable proxy for urban ambient air. This experimental approach was suitable for the scope of this study, but was subject to numerous boundary conditions that limit a general use. Aerodynamic stage penetration midpoint diameters were estimated to be 2.4 and 1.0 μm for the first two RDI stages. Additionally, the spatial uniformity and geometrical size distribution of the deposited aerosol were investigated using micro-focus synchrotron radiation X-ray fluorescence spectrometry (micro-SR-XRF) and transmission electron microscopy (TEM), respectively. The size distribution of the particles found on the TEM samples agreed well with the results from the APS experiments. The RDI deposits showed sufficient uniformity for subsequent spectrometric analysis, but in the 2.5–10 μm size range the particle area density was very low. All of the applied methods confirmed the theoretical cutoff values of the modified RDI and showed that compared to other cascade impactors, the determined stage penetration sharpness was rather broad for the individual impactor stages.
Collaboration
Dive into the Peter Lienemann's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Institute of Aquatic Science and Technology
View shared research outputsSwiss Federal Institute of Aquatic Science and Technology
View shared research outputs