Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Lockey is active.

Publication


Featured researches published by Peter Lockey.


Bioorganic & Medicinal Chemistry Letters | 2008

1H-Pyrazolo[3,4-g]hexahydro-isoquinolines as selective glucocorticoid receptor antagonists with high functional activity.

Robin D. Clark; Nicholas C. Ray; Karen Williams; Paul Blaney; Stuart Ward; Peter Crackett; Christopher Hurley; Hazel Joan Dyke; David E. Clark; Peter Lockey; Rene Devos; Melanie Wong; Soraya S. Porres; Colin P. Bright; Robert E. Jenkins; Joseph K. Belanoff

Addition of the 4-fluorophenylpyrazole group to the previously described 2-azadecalin glucocorticoid receptor (GR) antagonist 1 resulted in significantly enhanced functional activity. SAR of the bridgehead substituent indicated that whereas groups as small as methyl afforded high GR binding, GR functional activity was enhanced by larger groups such as benzyl, substituted ethers, and aminoalkyl derivatives. GR antagonists with binding and functional activity comparable to mifepristone were discovered (e.g., 52: GR binding K(i) 0.7 nM; GR reporter gene functional K(i) 0.6 nM) and found to be highly selective over other steroid receptors. Analogues 43 and 45 had >50% oral bioavailability in the dog.


Bioorganic & Medicinal Chemistry Letters | 2013

Structure-based design of substituted hexafluoroisopropanol-arylsulfonamides as modulators of RORc.

Benjamin P. Fauber; Gladys de Leon Boenig; Brenda Burton; Céline Eidenschenk; Christine Everett; Alberto Gobbi; Sarah G. Hymowitz; Adam R. Johnson; Marya Liimatta; Peter Lockey; Maxine Norman; Wenjun Ouyang; Olivier René; Harvey Wong

The structure-activity relationships of T0901317 analogs were explored as RORc inverse agonists using the principles of property- and structure-based drug design. An X-ray co-crystal structure of T0901317 and RORc was obtained and provided molecular insight into why T0901317 functioned as an inverse agonist of RORc; whereas, the same ligand functioned as an agonist of FXR, LXR, and PXR. The structural data was also used to design inhibitors with improved RORc biochemical and cellular activities. The improved inhibitors possessed enhanced selectivity profiles (rationalized using the X-ray crystallographic data) against other nuclear receptors.


Bioorganic & Medicinal Chemistry Letters | 2007

Identification and optimisation of a series of substituted 5-pyridin-2-yl-thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors

Steve Price; Walter Bordogna; Richard J. Bull; David E. Clark; Peter Crackett; Hazel Joan Dyke; Matthew Gill; Neil Victor Harris; Julia Gorski; Julia Lloyd; Peter Lockey; Julia Mullett; Alan Geoffrey Roach; Fabien Roussel; Anne White

Further investigation of a series of thienyl-based hydroxamic acids that included ADS100380 and ADS102550 led to the identification of the 5-pyridin-2-yl-thiophene-2-hydroxamic acid 3c, which possessed modest HDAC inhibitory activity. Substitution at the 5- and 6-positions of the pyridyl ring of compound 3c provided compounds 5a-g, 7a, b, 9, and 13a. Compound 5b demonstrated improved potency, in vitro DMPK profile, and rat oral bioavailability, compared to ADS102550. Functionalisation of the pendent phenyl group of compounds 5b, 5e and 13a provided analogues that possessed excellent enzyme inhibition and anti-proliferative activity.


ACS Medicinal Chemistry Letters | 2015

Minor Structural Change to Tertiary Sulfonamide RORc Ligands Led to Opposite Mechanisms of Action.

Olivier René; Benjamin P. Fauber; Gladys de Leon Boenig; Brenda Burton; Céline Eidenschenk; Christine Everett; Alberto Gobbi; Sarah G. Hymowitz; Adam R. Johnson; James R. Kiefer; Marya Liimatta; Peter Lockey; Maxine Norman; Wenjun Ouyang; Heidi J.A. Wallweber; Harvey Wong

A minor structural change to tertiary sulfonamide RORc ligands led to distinct mechanisms of action. Co-crystal structures of two compounds revealed mechanistically consistent protein conformational changes. Optimized phenylsulfonamides were identified as RORc agonists while benzylsulfonamides exhibited potent inverse agonist activity. Compounds behaving as agonists in our biochemical assay also gave rise to an increased production of IL-17 in human PBMCs whereas inverse agonists led to significant suppression of IL-17 under the same assay conditions. The most potent inverse agonist compound showed >180-fold selectivity over the ROR isoforms as well as all other nuclear receptors that were profiled.


Bioorganic & Medicinal Chemistry Letters | 2014

Reduction in lipophilicity improved the solubility, plasma-protein binding, and permeability of tertiary sulfonamide RORc inverse agonists.

Benjamin P. Fauber; Olivier René; Gladys de Leon Boenig; Brenda Burton; Yuzhong Deng; Céline Eidenschenk; Christine Everett; Alberto Gobbi; Sarah G. Hymowitz; Adam R. Johnson; Hank La; Marya Liimatta; Peter Lockey; Maxine Norman; Wenjun Ouyang; Weiru Wang; Harvey Wong

Using structure-based drug design principles, we identified opportunities to reduce the lipophilicity of our tertiary sulfonamide RORc inverse agonists. The new analogs possessed improved RORc cellular potencies with >77-fold selectivity for RORc over other nuclear receptors in our cell assay suite. The reduction in lipophilicity also led to an increased plasma-protein unbound fraction and improvements in cellular permeability and aqueous solubility.


Journal of Medicinal Chemistry | 2015

Discovery of 1-{4-[3-Fluoro-4-((3S,6R)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone (GNE-3500): a Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor C (RORc or RORγ) Inverse Agonist

Benjamin P. Fauber; Olivier René; Yuzhong Deng; Jason DeVoss; Céline Eidenschenk; Christine Everett; Arunima Ganguli; Alberto Gobbi; Julie Hawkins; Adam R. Johnson; Hank La; Justin Lesch; Peter Lockey; Maxine Norman; Wenjun Ouyang; Susan Summerhill; Harvey Wong

Retinoic acid receptor-related orphan receptor C (RORc, RORγ, or NR1F3) is a nuclear receptor that plays a major role in the production of interleukin (IL)-17. Considerable efforts have been directed toward the discovery of selective RORc inverse agonists as potential treatments of inflammatory diseases such as psoriasis and rheumatoid arthritis. Using the previously reported tertiary sulfonamide 1 as a starting point, we engineered structural modifications that significantly improved human and rat metabolic stabilities while maintaining a potent and highly selective RORc inverse agonist profile. The most advanced δ-sultam compound, GNE-3500 (27, 1-{4-[3-fluoro-4-((3S,6R)-3-methyl-1,1-dioxo-6-phenyl-[1,2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone), possessed favorable RORc cellular potency with 75-fold selectivity for RORc over other ROR family members and >200-fold selectivity over 25 additional nuclear receptors in a cell assay panel. The favorable potency, selectivity, in vitro ADME properties, in vivo PK, and dose-dependent inhibition of IL-17 in a PK/PD model support the evaluation of 27 in preclinical studies.


Bioorganic & Medicinal Chemistry Letters | 2014

Identification of tertiary sulfonamides as RORc inverse agonists.

Benjamin P. Fauber; Olivier René; Brenda Burton; Christine Everett; Alberto Gobbi; Julie Hawkins; Adam R. Johnson; Marya Liimatta; Peter Lockey; Maxine Norman; Harvey Wong

Screening a nuclear receptor compound subset in a RORc biochemical binding assay revealed a benzylic tertiary sulfonamide hit. Herein, we describe the identification of compounds with improved RORc biochemical inverse agonist activity and cellular potencies. These improved compounds also possessed appreciable selectivity for RORc over other nuclear receptors.


Journal of Medicinal Chemistry | 2015

An Orally Bioavailable, Indole-3-glyoxylamide Based Series of Tubulin Polymerization Inhibitors Showing Tumor Growth Inhibition in a Mouse Xenograft Model of Head and Neck Cancer

Helen E. Colley; Munitta Muthana; Sarah Danson; Lucinda V. Jackson; Matthew L. Brett; Joanne Harrison; Sean F. Coole; Daniel P. Mason; Luke R. Jennings; Melanie Wong; Vamshi Tulasi; Dennis Norman; Peter Lockey; Lynne Williams; Alexander G. Dossetter; Edward Jolyon Griffen; Mark J. Thompson

A number of indole-3-glyoxylamides have previously been reported as tubulin polymerization inhibitors, although none has yet been successfully developed clinically. We report here a new series of related compounds, modified according to a strategy of reducing aromatic ring count and introducing a greater degree of saturation, which retain potent tubulin polymerization activity but with a distinct SAR from previously documented libraries. A subset of active compounds from the reported series is shown to interact with tubulin at the colchicine binding site, disrupt the cellular microtubule network, and exert a cytotoxic effect against multiple cancer cell lines. Two compounds demonstrated significant tumor growth inhibition in a mouse xenograft model of head and neck cancer, a type of the disease which often proves resistant to chemotherapy, supporting further development of the current series as potential new therapeutics.


Bioorganic & Medicinal Chemistry Letters | 2010

Identification and hit-to-lead exploration of a novel series of histamine H4 receptor inverse agonists.

Sue Cramp; Hazel Joan Dyke; Christopher Higgs; David E. Clark; Matthew Gill; Pascal Savy; Neil Jennings; Steve Price; Peter Lockey; Dennis Norman; Soraya S. Porres; Francis X. Wilson; Alison Jones; Nigel Ramsden; Raffaella Mangano; Dan Leggate; Marie Andersson; Richard Hale

The identification and hit-to-lead exploration of a novel, potent and selective series of histamine H(4) receptor inverse agonists is described. The initial hit, 3A (IC(50) 19 nM) was identified by means of a ligand-based virtual screening approach. Subsequent medicinal chemistry exploration yielded 18I which possessed increased potency (R-enantiomer IC(50) 1 nM) as well as enhanced microsomal stability.


Bioorganic & Medicinal Chemistry Letters | 2014

A reversed sulfonamide series of selective RORc inverse agonists.

Monique Bodil Van Niel; Benjamin P. Fauber; Matthew W. Cartwright; Simon Gaines; Jonathan Killen; Olivier René; Stuart Ward; Gladys de Leon Boenig; Yuzhong Deng; Céline Eidenschenk; Christine Everett; Emanuela Gancia; Arunima Ganguli; Alberto Gobbi; Julie Hawkins; Adam R. Johnson; James R. Kiefer; Hank La; Peter Lockey; Maxine Norman; Wenjun Ouyang; Ann Qin; Nicole Wakes; Bohdan Waszkowycz; Harvey Wong

The identification of a new series of RORc inverse agonists is described. Comprehensive structure-activity relationship studies of this reversed sulfonamide series identified potent RORc inverse agonists in biochemical and cellular assays which were also selective against a panel of nuclear receptors. Our work has contributed a compound that may serve as a useful in vitro tool to delineate the complex biological pathways involved in signalling through RORc. An X-ray co-crystal structure of an analogue with RORc has also provided useful insights into the binding interactions of the new series.

Collaboration


Dive into the Peter Lockey's collaboration.

Top Co-Authors

Avatar

David E. Clark

Charles River Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxine Norman

Charles River Laboratories

View shared research outputs
Top Co-Authors

Avatar

Melanie Wong

Charles River Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge