Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Löw is active.

Publication


Featured researches published by Peter Löw.


Neuron | 1999

Endophilin/SH3p4 Is Required for the Transition from Early to Late Stages in Clathrin-Mediated Synaptic Vesicle Endocytosis

Niels Ringstad; Helge Gad; Peter Löw; Gilbert Di Paolo; Lennart Brodin; Oleg Shupliakov; Pietro De Camilli

Endophilin/SH3p4 is a protein highly enriched in nerve terminals that binds the GTPase dynamin and the polyphosphoinositide phosphatase synaptojanin, two proteins implicated in synaptic vesicle endocytosis. We show here that antibody-mediated disruption of endophilin function in a tonically stimulated synapse leads to a block in the invagination of clathrin-coated pits adjacent to the active zone and therefore to a block of synaptic vesicle recycling. We also show that in a cell-free system, endophilin is not associated with clathrin coats and is a functional partner of dynamin. Our findings suggest that endophilin is part of a biochemical machinery that acts in trans to the clathrin coat from early stages to vesicle fission.


Neuron | 2000

Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin.

Helge Gad; Niels Ringstad; Peter Löw; Ole Kjaerulff; Jenny S. Gustafsson; Markus R. Wenk; Gilbert Di Paolo; Yasuo Nemoto; John Crum; Mark H. Ellisman; Pietro De Camilli; Oleg Shupliakov; Lennart Brodin

Coordination between sequential steps in synaptic vesicle endocytosis, including clathrin coat formation, fission, and uncoating, appears to involve proteinprotein interactions. Here, we show that compounds that disrupt interactions of the SH3 domain of endophilin with dynamin and synaptojanin impair synaptic vesicle endocytosis in a living synapse. Two distinct endocytic intermediates accumulated. Free clathrin-coated vesicles were induced by a peptide-blocking endophilins SH3 domain and by antibodies to the proline-rich domain (PRD) of synaptojanin. Invaginated clathrin-coated pits were induced by the same peptide and by the SH3 domain of endophilin. We suggest that the SH3 domain of endophilin participates in both fission and uncoating and that it may be a key component of a molecular switch that couples the fission reaction to uncoating.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton

Oleg Shupliakov; Ona Bloom; Jenny S. Gustafsson; Ole Kjaerulff; Peter Löw; Nikolay Tomilin; Vincent A. Pieribone; Paul Greengard; Lennart Brodin

Actin is an abundant component of nerve terminals that has been implicated at multiple steps of the synaptic vesicle cycle, including reversible anchoring, exocytosis, and recycling of synaptic vesicles. In the present study we used the lamprey reticulospinal synapse to examine the role of actin at the site of synaptic vesicle recycling, the endocytic zone. Compounds interfering with actin function, including phalloidin, the catalytic subunit of Clostridium botulinum C2 toxin, and N-ethylmaleimide-treated myosin S1 fragments were microinjected into the axon. In unstimulated, phalloidin-injected axons actin filaments formed a thin cytomatrix adjacent to the plasma membrane around the synaptic vesicle cluster. The filaments proliferated after stimulation and extended toward the vesicle cluster. Synaptic vesicles were tethered along the filaments. Injection of N-ethylmaleimide-treated myosin S1 fragments caused accumulation of aggregates of synaptic vesicles between the endocytic zone and the vesicle cluster, suggesting that vesicle transport was inhibited. Phalloidin, as well as C2 toxin, also caused changes in the structure of clathrin-coated pits in stimulated synapses. Our data provide evidence for a critical role of actin in recycling of synaptic vesicles, which seems to involve functions both in endocytosis and in the transport of recycled vesicles to the synaptic vesicle cluster.


Journal of Cell Biology | 2003

Colocalization of synapsin and actin during synaptic vesicle recycling

Ona Bloom; Emma Evergren; Nikolay Tomilin; Ole Kjaerulff; Peter Löw; Lennart Brodin; Vincent A. Pieribone; Paul Greengard; Oleg Shupliakov

It has been hypothesized that in the mature nerve terminal, interactions between synapsin and actin regulate the clustering of synaptic vesicles and the availability of vesicles for release during synaptic activity. Here, we have used immunogold electron microscopy to examine the subcellular localization of actin and synapsin in the giant synapse in lamprey at different states of synaptic activity. In agreement with earlier observations, in synapses at rest, synapsin immunoreactivity was preferentially localized to a portion of the vesicle cluster distal to the active zone. During synaptic activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known function in clustering of vesicles in the reserve pool, synapsin migrates from the synaptic vesicle cluster and participates in the organization of the actin-rich cytomatrix in the endocytic zone during synaptic activity.


Neuron | 1998

Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse.

Helge Gad; Peter Löw; Elena Zotova; Lennart Brodin; Oleg Shupliakov

We have tested whether action potential-evoked Ca2+ influx is required to initiate clathrin-mediated synaptic vesicle endocytosis in the lamprey reticulospinal synapse. Exo- and endocytosis were temporally separated by a procedure involving tonic action potential stimulation and subsequent removal of extracellular Ca2+ (Ca2+e). A low concentration of Ca2+ ([Ca2+]e of 11 microM) was found to be required for the induction of early stages of endocytosis. However, the entire endocytic process, from the formation of clathrin-coated membrane invaginations to the generation of synaptic vesicles, proceeded in the absence of action potential-mediated Ca2+ entry. Our results indicate that the membrane of synaptic vesicles newly incorporated in the plasma membrane is a sufficient trigger of clathrin-mediated synaptic vesicle endocytosis.


Journal of Virology | 2002

Processing and Degradation of Exogenous Prion Protein by CD11c+ Myeloid Dendritic Cells In Vitro

Katarina M. Luhr; Robert P. A. Wallin; Hans-Gustaf Ljunggren; Peter Löw; Albert Taraboulos; Krister Kristensson

ABSTRACT The immune system plays an important role in facilitating the spread of prion infections from the periphery to the central nervous system. CD11c+ myeloid dendritic cells (DC) could, due to their subepithelial location and their migratory capacity, be early targets for prion infection and contribute to the spread of infection. In order to analyze mechanisms by which these cells may affect prion propagation, we studied in vitro the effect of exposing such DC to scrapie-infected GT1-1 cells, which produce the scrapie prion protein PrPSc. In this system, the DC efficiently engulfed the infected GT1-1 cells. Unexpectedly, PrPSc, which is generally resistant to protease digestion, was processed and rapidly degraded. Based on this observation we speculate that CD11c+ DC may play a dual role in prion infections: on one hand they may facilitate neuroinvasion by transfer of the infectious agent as suggested from in vivo studies, but on the other hand they may protect against the infection by causing an efficient degradation of PrPSc. Thus, the migrating and highly proteolytic CD11c+ myeloid DC may affect the balance between propagation and clearance of PrPSc in the organism.


The Journal of Physiology | 2007

Sodium-dependent potassium channels of a Slack-like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons

Peter Wallén; Brita Robertson; Lorenzo Cangiano; Peter Löw; Arin Bhattacharjee; Leonard K. Kaczmarek; Sten Grillner

The slow afterhyperpolarization (sAHP) following the action potential is the main determinant of spike frequency regulation. The sAHP after single action potentials in neurons of the lamprey locomotor network is largely due to calcium‐dependent K+ channels (80%), activated by calcium entering the cell during the spike. The residual (20%) component becomes prominent during high level activity (50% of the sAHP). It is not Ca2+ dependent, has a reversal potential like that of potassium, and is not affected by chloride injection. It is not due to rapid activation of Na+/K+‐ATPase. This non‐KCa‐sAHP is reduced markedly in amplitude when sodium ions are replaced by lithium ions, and is thus sodium dependent. Quinidine also blocks this sAHP component, further indicating an involvement of sodium‐dependent potassium channels (KNa). Modulators tested do not influence the KNa‐sAHP amplitude. Immunofluorescence labelling with an anti‐Slack antibody revealed distinct immunoreactivity of medium‐sized and large neurons in the grey matter of the lamprey spinal cord, suggesting the presence of a Slack‐like subtype of KNa channel. The results strongly indicate that a KNa potassium current contributes importantly to the sAHP and thereby to neuronal frequency regulation during high level burst activity as during locomotion. This is, to our knowledge, the first demonstration of a functional role for the Slack gene in contributing to the slow AHP.


The Journal of Neuroscience | 2008

Perturbation of Syndapin/PACSIN Impairs Synaptic Vesicle Recycling Evoked by Intense Stimulation

Fredrik Andersson; Joel Jakobsson; Peter Löw; Oleg Shupliakov; Lennart Brodin

Synaptic vesicle recycling has been proposed to depend on proteins which coordinate membrane and cytoskeletal dynamics. Here, we examine the role of the dynamin- and N-WASP (neural Wiskott-Aldrich syndrome protein)-binding protein syndapin/PACSIN at the lamprey reticulospinal synapse. We find that presynaptic microinjection of syndapin antibodies inhibits vesicle recycling evoked by intense (5 Hz or more), but not by light (0.2 Hz) stimulation. This contrasts with the inhibition at light stimulation induced by perturbation of amphiphysin (Shupliakov et al., 1997). Inhibition by syndapin antibodies was associated with massive accumulation of membranous cisternae and invaginations around release sites, but not of coated pits at the plasma membrane. Cisternae contained vesicle membrane, as shown by vesicle-associated membrane protein 2 (VAMP2)/synaptobrevin 2 immunolabeling. Similar effects were observed when syndapin was perturbed before onset of massive endocytosis induced by preceding intense stimulation. Selective perturbation of the Src homology 3 domain interactions of syndapin was sufficient to induce vesicle depletion and accumulation of cisternae. Our data show an involvement of syndapin in synaptic vesicle recycling evoked by intense stimulation. We propose that syndapin is required to stabilize the plasma membrane and/or facilitate bulk endocytosis at high release rates.


Traffic | 2004

Amphiphysin is a Component of Clathrin Coats Formed During Synaptic Vesicle Recycling at the Lamprey Giant Synapse

Emma Evergren; Melissa Marcucci; Nikolay Tomilin; Peter Löw; Vladimir I. Slepnev; Fredrik Andersson; Helge Gad; Lennart Brodin; Pietro De Camilli; Oleg Shupliakov

Amphiphysin is a protein enriched at mammalian synapses thought to function as a clathrin accessory factor in synaptic vesicle endocytosis. Here we examine the involvement of amphiphysin in synaptic vesicle recycling at the giant synapse in the lamprey. We show that amphiphysin resides in the synaptic vesicle cluster at rest and relocates to sites of endocytosis during synaptic activity. It accumulates at coated pits where its SH3 domain, but not its central clathrin/AP‐2‐binding (CLAP) region, is accessible for antibody binding. Microinjection of antibodies specifically directed against the CLAP region inhibited recycling of synaptic vesicles and caused accumulation of clathrin‐coated intermediates with distorted morphology, including flat patches of coated presynaptic membrane. Our data provide evidence for an activity‐dependent redistribution of amphiphysin in intact nerve terminals and show that amphiphysin is a component of presynaptic clathrin‐coated intermediates formed during synaptic vesicle recycling.


European Journal of Neuroscience | 1997

Sustained Neurotransmitter Release: New Molecular Clues

Lennart Brodin; Peter Löw; Helge Gad; Jenny S. Gustafsson; Vincent A. Pieribone; Oleg Shupliakov

Chemical synapses convey impulses at high frequency by exocytosis of synaptic vesicles. To avoid failure of synaptic transmission, rapid replenishment of synaptic vesicles must occur. Recent molecular perturbation studies have confirmed that the recycling of synaptic vesicles involves clathrin‐mediated endocytosis. The rate of exocytosis would thus be limited by the capacity of the synaptic clathrin machinery unless vesicles could be drawn from existing pools. The mobilization of vesicles from the pool clustered at the release sites appears to provide a mechanism by which the rate of exocytosis can intermittently exceed the rate of recycling. Perturbation of synapsins causes disruption of vesicle clusters and impairment of synaptic transmission at high but not at low frequencies. Both clathrin‐mediated recycling and mobilization of vesicles from the reserve pool are thus important in the replenishment of synaptic vesicles. The efficacy of each mechanism appears to differ between synapses which operate with different patterns of activity.

Collaboration


Dive into the Peter Löw's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helge Gad

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar

Ole Kiehn

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge