Peter Lynton Harrison
Southern Cross University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Lynton Harrison.
Science | 1984
Peter Lynton Harrison; Russell C. Babcock; Gordon D. Bull; J K Oliver; Carden C. Wallace; Bette L. Willis
Synchronous multispecific spawning by a total of 32 coral species occurred a few nights after late spring full moons in 1981 and 1982 at three locations on the Great Barrier Reef, Australia. The data invalidate the generalization that most corals have internally fertilized, brooded planula larvae. In every species observed, gametes were released; external fertilization and development then followed. The developmental rates of externally fertilized eggs and longevities of planulae indicate that planulae may be dispersed between reefs.
Marine Biology | 1986
Russell C. Babcock; Gordon D. Bull; Peter Lynton Harrison; A. J. Heyward; J K Oliver; Carden C. Wallace; Bette L. Willis
Following observations of mass spawning of hermatypic corals on the Great Barrier Reef in 1981 and 1982, spawning dates were successfully predicted and documented at five reefs on the Central and Northern Great Barrier Reef in 1983. During the predicted times, 105 species from 36 genera and 11 families were observed to spawn. Of these, 15 species were shown to have an annual gametogenic cycle. All but two of the species observed during mass spawnings shed gametes which underwent external fertilization and development. Synchronous spawning was observed both within and between the five reefs studied, which were separated by as much as 5° of latitude (500 km) or almost a quarter of the length of the Great Barrier Reef. The mass spawning of corals took place on only a few nights of the year, between the full and lastquarter moon in late spring. Maturation of gametes coincided with rapidly rising spring sea temperatures. Lunar and diel cycles may provide cues for the synchronization of gamete release in these species. The hour and night on which the greatest number of species and individuals spawned coincided with low-amplitude tides. Multispecific synchronous spawning, or “mass spawning”, of scleractinian and some alcyonacean corals represents a phenomenon which is, so far, unique in both marine and terrestrial communities.
Marine Pollution Bulletin | 2001
Klaus Koop; David J. Booth; Andrew D Broadbent; Jon Brodie; Douglas G. Capone; J. Coll; William C. Dennison; M. Erdmann; Peter Lynton Harrison; Ove Hoegh-Guldberg; Pat Hutchings; Graham B Jones; Anthony W. D. Larkum; Judith M. O'Neil; A.D.L. Steven; E. Tentori; Selina Ward; J. Williamson; David Yellowlees
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef (One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 microM NH4+; 2.3 microM PO4(-3)) rapidly declined, reaching near-background levels (mean = 0.9 microM NH4+; 0.5 microM PO4(-3)) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 microM NH4+; 5.1 microM PO4(-3)) declining to means of 11.3 microM NH4+ and 2.4 microM PO4(-3) at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients. ENCORE has shown that reef organisms and processes investigated in situ were impacted by elevated nutrients. Impacts were dependent on dose level, whether nitrogen and/or phosphorus were elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment were visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs. inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies.
Proceedings of the National Academy of Sciences of the United States of America | 2015
John C. Z. Woinarski; Andrew A. Burbidge; Peter Lynton Harrison
Significance The island continent of Australia harbors much of the world’s most distinctive biodiversity, but this review describes an extent of recent and ongoing loss of its mammal fauna that is exceptionally high and appreciably greater than previously recognized. The causes of loss are dissimilar to those responsible for most biodiversity decline elsewhere in the world. The highly distinctive and mostly endemic Australian land mammal fauna has suffered an extraordinary rate of extinction (>10% of the 273 endemic terrestrial species) over the last ∼200 y: in comparison, only one native land mammal from continental North America became extinct since European settlement. A further 21% of Australian endemic land mammal species are now assessed to be threatened, indicating that the rate of loss (of one to two extinctions per decade) is likely to continue. Australia’s marine mammals have fared better overall, but status assessment for them is seriously impeded by lack of information. Much of the loss of Australian land mammal fauna (particularly in the vast deserts and tropical savannas) has been in areas that are remote from human population centers and recognized as relatively unmodified at global scale. In contrast to general patterns of extinction on other continents where the main cause is habitat loss, hunting, and impacts of human development, particularly in areas of high and increasing human population pressures, the loss of Australian land mammals is most likely due primarily to predation by introduced species, particularly the feral cat, Felis catus, and European red fox, Vulpes vulpes, and changed fire regimes.
Archive | 2011
Peter Lynton Harrison
Sexual reproduction by scleractinian reef corals is important for maintaining coral populations and evolutionary processes. The ongoing global renaissance in coral reproduction research is providing a wealth of new information on this topic, and has almost doubled the global database on coral reproductive patterns during the past two decades. Information on sexual reproduction is now available for 444 scleractinian species, and confirms that hermaphroditic broadcast spawning is the dominant pattern among coral species studied to date. Relatively few hermaphroditic or gonochoric brooding species have been recorded. Multispecific coral spawning has been recorded on many reefs, but the degree of reproductive synchrony varies greatly within and among species at different geographic locations.
Coral Reefs | 1997
Bette L. Willis; Russell C. Babcock; Peter Lynton Harrison; Carden C. Wallace
Abstract. Synchronous spawning of many coral species that co-occur on Indo-Pacific reefs raises the possibility that hybridization plays a role in their evolution. Here we use experimental crosses to examine mating compatibilities and breeding barriers in a group of sessile animals whose mating systems are primarily governed by interactions among free-spawned gametes. We found hybridization occurs readily in more than one-third of 42 species pairs from the common genera Acropora, Montipora and Platygyra. Mean fertilization success ranged from 1% to 50% in species crosses, but standard deviations about these means were large and in some cases, fertilization success in individual colony matings was greater than 95%. Cases of high fertility in individual, interspecific matings were found in all three genera. Hybridization occurred most readily between species that were morphologically similar, identifying areas where current taxonomic judgements may require further testing. However, cases of significant hybridization also occurred between species that are morphologically distinct. Evidence of in vitro hybridization combined with the lack of either temporal or spatial barriers to interbreeding among field populations of these species, indicates that natural hybridization may occur commonly between congeneric corals that are currently recognized as distinct species. We also detected mating incompatibilities between some colonies within some species. In some cases, incompatible colonies corresponded to distinct morphotypes, but not in others. Thus some breeding groups in scleractinian corals are potentially larger, but others are smaller, than would be predicted using morphological criteria. Gamete incompatibilities within a morphospecies that readily hybridizes with other species may be the result of a mating system that is governed by gamete-level interactions. Imprecision in the alignment of morphological and breeding boundaries suggests a single species concept may not apply to scleractinian corals and challenges the tacit assumption that currently defined coral species encompass biological, evolutionary and phylogenetic species. Hybridization between supposedly isolated species introduces a reticulate nature to the evolution of corals and has profound implications for present understanding of the population genetics, phylogenetics, and evolutionary biology of scleractinian corals.
Journal of Experimental Marine Biology and Ecology | 2000
Selina Ward; Peter Lynton Harrison
Colonies of two scleractinian reef coral species, Acropora longicyathus and Acropora aspera were transplanted into patch reefs at One Tree Reef, Great Barrier Reef, Australia as part of the ENCORE experiment. These corals and colonies of A. aspera which were naturally present in the patch reefs were exposed to four treatments over two years: controls with normal seawater, elevated levels of nitrogen only, phosphorus only, or nitrogen plus phosphorus. These corals were sampled and used to determine whether gametogenic cycles and fecundity were affected by nutrient enrichment. Acropora longicyathus had a single annual gametogenic cycle. Corals exposed to elevated nitrogen produced significantly smaller and fewer eggs and contained less testes material than those which were not exposed to nitrogen. Exposure to elevated phosphorus only resulted in corals producing more but smaller eggs, and more testes material. Egg numbers of colonies from other treatments decreased as the gametogenic cycles continued, but those of the phosphorus colonies showed almost no reduction in egg numbers between the early and late stages of the gametogenic cycles. These results have important management implications for coral reefs as they demonstrate that small increases in concentrations of nitrogen and phosphorus can have severe effects on reproductive activity in these species of scleractinian corals.
Marine Pollution Bulletin | 2000
Amanda J Reichelt-Brushett; Peter Lynton Harrison
Abstract This study examined the effect of copper on the settlement success of planula larvae of the reef-building coral Acropora tenuis during 1994 and 1996 at Magnetic Island, Great Barrier Reef. Copper concentrations of 2, 10, 20 μg l−1 did not inhibit larval settlement after 48-h exposure. However, copper concentrations of 42 μg l−1 and 81 μg l−1 significantly reduced settlement success of A. tenuis larvae after 48-h exposure compared with controls using normal seawater. At 200 μg l−1 copper, all larvae died. EC50 values for the effect of copper on A. tenuis larval settlement were calculated from the 1996 results using measured copper concentrations. The 48-h EC50 was 35 μg l−1 with an upper and lower 95% confidence limit of 37 μg l−1 and 32 μg l−1, respectively. The 48-h NOEC value for both experiments was 20 μg l−1 copper. These experiments provide some of the first data on sub-lethal effects of trace metals on tropical marine organisms, and demonstrate that relatively low copper concentrations impair or inhibit settlement of coral larvae.
Marine and Freshwater Research | 1995
V J Harriott; Peter Lynton Harrison; Simon A. Banks
Lord Howe Island (31o33′S, 159o05′E) is surrounded by the southern-most coral reefs in the Pacific Ocean. The status of the benthic communities at Lord Howe Island was quantified in 1992-93 using replicated video-transects at 20 sites in the shallow reefal area (<20 m depth). The cover of hard coral was comparable with coral cover on some tropical reefs, ranging from less than 10% at some reef flat sites to greater than 40% cover at two seaward beach sites. The process of reef formation is apparently slow, and accretion of limestone is localized. A total of 59 scleractinian coral species were recorded during this study (including 19 new records), bringing the total number recorded at Lord Howe Island to 83. The coral communities contain a unique association of tropical species at their southern limits of distribution, and subtropical species which are rare or absent from the Great Barrier Reef. Many of the species that have been recorded from Lord Howe Island are rare, and may have resulted from chance recruitment of only a few larvae. There have been few major changes in the coral communities at Lord Howe Island in the past 16 years. At two inshore sites there was an apparent reduction in hard coral cover in the 1980s.
Proceedings of the Royal Society of London B: Biological Sciences | 2009
Annika Me Noreen; Peter Lynton Harrison; Madeleine J. H. van Oppen
Remote populations are predicted to be vulnerable owing to their isolation from potential source reefs, and usually low population size and associated increased extinction risk. We investigated genetic diversity, population subdivision and connectivity in the brooding reef coral Seriatopora hystrix at the limits of its Eastern Australian (EA) distribution and three sites in the southern Great Barrier Reef (GBR). Over the approximately 1270 km survey range, high levels of population subdivision were detected (global FST = 0.224), with the greatest range in pairwise FST values observed among the three southernmost locations: Lord Howe Island, Elizabeth Reef and Middleton Reef. Flinders Reef, located between the GBR and the more southerly offshore reefs, was highly isolated and showed the signature of a recent bottleneck. High pairwise FST values and the presence of multiple genetic clusters indicate that EA subtropical coral populations have been historically isolated from each other and the GBR. One putative first-generation migrant was detected from the GBR into the EA subtropics. Occasional long-distance dispersal is supported by changes in species composition at these high-latitude reefs and the occurrence of new species records over the past three decades. While subtropical populations exhibited significantly lower allelic richness than their GBR counterparts, genetic diversity was still moderately high. Furthermore, subtropical populations were not inbred and had a considerable number of private alleles. The results suggest that these high-latitude S. hystrix populations are supplemented by infrequent long-distance migrants from the GBR and may have adequate population sizes to maintain viability and resist severe losses of genetic diversity.
Collaboration
Dive into the Peter Lynton Harrison's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs