Peter M. Carlton
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter M. Carlton.
Science | 2008
Lothar Schermelleh; Peter M. Carlton; Sebastian Haase; Lin Shao; Lukman Winoto; Peter Kner; Brian Burke; M. Cristina Cardoso; David A. Agard; Mats G. L. Gustafsson; Heinrich Leonhardt; John W. Sedat
Fluorescence light microscopy allows multicolor visualization of cellular components with high specificity, but its utility has until recently been constrained by the intrinsic limit of spatial resolution. We applied three-dimensional structured illumination microscopy (3D-SIM) to circumvent this limit and to study the mammalian nucleus. By simultaneously imaging chromatin, nuclear lamina, and the nuclear pore complex (NPC), we observed several features that escape detection by conventional microscopy. We could resolve single NPCs that colocalized with channels in the lamin network and peripheral heterochromatin. We could differentially localize distinct NPC components and detect double-layered invaginations of the nuclear envelope in prophase as previously seen only by electron microscopy. Multicolor 3D-SIM opens new and facile possibilities to analyze subcellular structures beyond the diffraction limit of the emitted light.
Biophysical Journal | 2008
Mats G. L. Gustafsson; Lin Shao; Peter M. Carlton; C. J. Rachel Wang; Inna N. Golubovskaya; W. Zacheus Cande; David A. Agard; John W. Sedat
Structured illumination microscopy is a method that can increase the spatial resolution of wide-field fluorescence microscopy beyond its classical limit by using spatially structured illumination light. Here we describe how this method can be applied in three dimensions to double the axial as well as the lateral resolution, with true optical sectioning. A grating is used to generate three mutually coherent light beams, which interfere in the specimen to form an illumination pattern that varies both laterally and axially. The spatially structured excitation intensity causes normally unreachable high-resolution information to become encoded into the observed images through spatial frequency mixing. This new information is computationally extracted and used to generate a three-dimensional reconstruction with twice as high resolution, in all three dimensions, as is possible in a conventional wide-field microscope. The method has been demonstrated on both test objects and biological specimens, and has produced the first light microscopy images of the synaptonemal complex in which the lateral elements are clearly resolved.
Cell | 2010
Manojkumar A. Puthenveedu; Benjamin E.L. Lauffer; Paul Temkin; Rachel Vistein; Peter M. Carlton; Kurt S. Thorn; Jack Taunton; Orion D. Weiner; Robert G. Parton; Mark von Zastrow
The functional consequences of signaling receptor endocytosis are determined by the endosomal sorting of receptors between degradation and recycling pathways. How receptors recycle efficiently, in a sequence-dependent manner that is distinct from bulk membrane recycling, is not known. Here, in live cells, we visualize the sorting of a prototypical sequence-dependent recycling receptor, the beta-2 adrenergic receptor, from bulk recycling proteins and the degrading delta-opioid receptor. Our results reveal a remarkable diversity in recycling routes at the level of individual endosomes, and indicate that sequence-dependent recycling is an active process mediated by distinct endosomal subdomains distinct from those mediating bulk recycling. We identify a specialized subset of tubular microdomains on endosomes, stabilized by a highly localized but dynamic actin machinery, that mediate this sorting, and provide evidence that these actin-stabilized domains provide the physical basis for a two-step kinetic and affinity-based model for protein sorting into the sequence-dependent recycling pathway.
Cell | 2005
Carolyn M. Phillips; Chihunt Wong; Needhi Bhalla; Peter M. Carlton; Pinky Weiser; Philip M. Meneely; Abby F. Dernburg
The him-8 gene is essential for proper meiotic segregation of the X chromosomes in C. elegans. Here we show that loss of him-8 function causes profound X chromosome-specific defects in homolog pairing and synapsis. him-8 encodes a C2H2 zinc-finger protein that is expressed during meiosis and concentrates at a site on the X chromosome known as the meiotic pairing center (PC). A role for HIM-8 in PC function is supported by genetic interactions between PC lesions and him-8 mutations. HIM-8 bound chromosome sites associate with the nuclear envelope (NE) throughout meiotic prophase. Surprisingly, a point mutation in him-8 that retains both chromosome binding and NE localization fails to stabilize pairing or promote synapsis. These observations indicate that stabilization of homolog pairing is an active process in which the tethering of chromosome sites to the NE may be necessary but is not sufficient.
Cell | 2009
Aya Sato; Berith Isaac; Carolyn M. Phillips; Regina Rillo; Peter M. Carlton; David J. Wynne; Roshni A. Kasad; Abby F. Dernburg
During meiosis, each chromosome must pair with its unique homologous partner, a process that usually culminates with the formation of the synaptonemal complex (SC). In the nematode Caenorhabditis elegans, special regions on each chromosome known as pairing centers are essential for both homologous pairing and synapsis. We report that during early meiosis, pairing centers establish transient connections to the cytoplasmic microtubule network. These connections through the intact nuclear envelope require the SUN/KASH domain protein pair SUN-1 and ZYG-12. Disruption of microtubules inhibits chromosome pairing, indicating that these connections promote interhomolog interactions. Dynein activity is essential to license formation of the SC once pairing has been accomplished, most likely by overcoming a barrier imposed by the chromosome-nuclear envelope connection. Our findings thus provide insight into how homolog pairing is accomplished in meiosis and into the mechanisms regulating synapsis so that it occurs selectively between homologs. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.
Molecular and Biochemical Parasitology | 2008
Henry H. Chang; Arnold M. Falick; Peter M. Carlton; John W. Sedat; Joseph L. DeRisi; Michael A. Marletta
Malaria parasites utilize a short N-terminal amino acid motif termed the Plasmodium export element (PEXEL) to export an array of proteins to the host erythrocyte during blood stage infection. Using immunoaffinity chromatography and mass spectrometry, insight into this signal-mediated trafficking mechanism was gained by discovering that the PEXEL motif is cleaved and N-acetylated. PfHRPII and PfEMP2 are two soluble proteins exported by Plasmodium falciparum that were demonstrated to undergo PEXEL cleavage and N-acetylation, thus indicating that this N-terminal processing may be general to many exported soluble proteins. It was established that PEXEL processing occurs upstream of the brefeldin A-sensitive trafficking step in the P. falciparum secretory pathway, therefore cleavage and N-acetylation of the PEXEL motif occurs in the endoplasmic reticulum (ER) of the parasite. Furthermore, it was shown that the recognition of the processed N-terminus of exported proteins within the parasitophorous vacuole may be crucial for protein transport to the host erythrocyte. It appears that the PEXEL may be defined as a novel ER peptidase cleavage site and a classical N-acetyltransferase substrate sequence.
Neuron | 2008
Jan Pielage; Ling Cheng; Richard D. Fetter; Peter M. Carlton; John W. Sedat; Graeme W. Davis
In a forward genetic screen for mutations that destabilize the neuromuscular junction, we identified a novel long isoform of Drosophila ankyrin2 (ank2-L). We demonstrate that loss of presynaptic Ank2-L not only causes synapse disassembly and retraction but also disrupts neuronal excitability and NMJ morphology. We provide genetic evidence that ank2-L is necessary to generate the membrane constrictions that normally separate individual synaptic boutons and is necessary to achieve the normal spacing of subsynaptic protein domains, including the normal organization of synaptic cell adhesion molecules. Mechanistically, synapse organization is correlated with a lattice-like organization of Ank2-L, visualized using extended high-resolution structured-illumination microscopy. The stabilizing functions of Ank2-L can be mapped to the extended C-terminal domain that we demonstrate can directly bind and organize synaptic microtubules. We propose that a presynaptic Ank2-L lattice links synaptic membrane proteins and spectrin to the underlying microtubule cytoskeleton to organize and stabilize the presynaptic terminal.
Blood | 2011
Jeffrey A. Kamykowski; Peter M. Carlton; Siddharth Sehgal; Brian Storrie
Platelets are small anucleate blood cells that aggregate to seal leaks at sites of vascular injury and are important in the pathology of atherosclerosis, acute coronary syndromes, rheumatoid arthritis, cancer, and the regulation of angiogenesis. In all cases, platelet aggregation requires release of stored proteins from α-granules. However, how proteins with potentially antagonistic functions are packaged within α-granules is controversial. One possibility is the packaging of functional agonists and antagonists into different α-granule populations. By quantitative immunofluorescence colocalization, we found that pair-wise comparisons of 15 angiogenic-relevant α-granule proteins displayed little, if any, pattern of functional coclustering. Rather, the data suggested a Gaussian distribution indicative of stochastic protein delivery to individual granules. The apparent physiologic paradox raised by these data may be explained through alternate mechanisms, such as differential content release through incomplete granule fusion or dampened and balanced regulatory networks brought about by the corelease of antagonistic factors.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Peter M. Carlton; Jérôme Boulanger; Charles Kervrann; Jean-Baptiste Sibarita; Jean Salamero; Susannah Gordon-Messer; Debra A. Bressan; James E. Haber; Sebastian Haase; Lin Shao; Lukman Winoto; Atsushi Matsuda; Peter Kner; Satoru Uzawa; Mats G. L. Gustafsson; Zvi Kam; David A. Agard; John W. Sedat
Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components. We demonstrate a new microscope platform, OMX, that enables subsecond, multicolor four-dimensional data acquisition and also provides access to subdiffraction structured illumination imaging. Using this platform to image chromosome movement during a complete yeast cell cycle at one 3D image stack per second reveals an unexpected degree of photosensitivity of fluorophore-containing cells. To avoid perturbation of cell division, excitation levels had to be attenuated between 100 and 10,000× below the level normally used for imaging. We show that an image denoising algorithm that exploits redundancy in the image sequence over space and time allows recovery of biological information from the low light level noisy images while maintaining full cell viability with no fading.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Jingsong Xu; Alexandra Van Keymeulen; Nicole M. Wakida; Peter M. Carlton; Michael W. Berns; Henry R. Bourne
Like blood neutrophils, dHL60 cells respond to a uniform concentration of attractant by polarizing in apparently random directions. How each cell chooses its own direction is unknown. We now find that an arrow drawn from the center of the nucleus of an unpolarized cell to its centrosome strongly predicts the subsequent direction of attractant-induced polarity: Of 60 cells that polarized in response to uniform f-Met-Leu-Phe (fMLP), 42 polarized to the left of this arrow, 6 polarized to the right, and 12 polarized directly toward or away from the centrosome. To investigate this directional bias we perturbed a regulatory pathway, downstream of Cdc42 and partitioning-defective 6 (Par6), which controls centrosome orientation relative to polarity of other cells. Dominant negative Par6 mutants block polarity altogether, as previously shown for disrupting Cdc42 activity. Cells remain able to polarize, but without directional bias, if their microtubules are disrupted with nocodazole, or they express mutant proteins that interfere with activities of PKCζ or dynein. Expressing constitutively active glycogen synthase kinase 3β (GSK3β) causes cells to polarize preferentially to the right. Distributions of most of these polarity regulators localize to the centrosome but show no left–right asymmetry before polarization. Together, these findings suggest that an intrinsically chiral structure, perhaps the centrosome, serves as a template for directing polarity in the absence of spatial cues. Such a template could help to determine left–right asymmetry and planar polarity in development.