Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter M. Christensen is active.

Publication


Featured researches published by Peter M. Christensen.


Journal of Applied Physiology | 2013

Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function

Robert A. Jacobs; Daniela Flück; Thomas Christian Bonne; Simon Bürgi; Peter M. Christensen; Marco Toigo; Carsten Lundby

Six sessions of high-intensity interval training (HIT) are sufficient to improve exercise capacity. The mechanisms explaining such improvements are unclear. Accordingly, the aim of this study was to perform a comprehensive evaluation of physiologically relevant adaptations occurring after six sessions of HIT to determine the mechanisms explaining improvements in exercise performance. Sixteen untrained (43 ± 6 ml·kg(-1)·min(-1)) subjects completed six sessions of repeated (8-12) 60 s intervals of high-intensity cycling (100% peak power output elicited during incremental maximal exercise test) intermixed with 75 s of recovery cycling at a low intensity (30 W) over a 2-wk period. Potential training-induced alterations in skeletal muscle respiratory capacity, mitochondrial content, skeletal muscle oxygenation, cardiac capacity, blood volumes, and peripheral fatigue resistance were all assessed prior to and again following training. Maximal measures of oxygen uptake (Vo2peak; ∼8%; P = 0.026) and cycling time to complete a set amount of work (∼5%; P = 0.008) improved. Skeletal muscle respiratory capacities increased, most likely as a result of an expansion of skeletal muscle mitochondria (∼20%, P = 0.026), as assessed by cytochrome c oxidase activity. Skeletal muscle deoxygenation also increased while maximal cardiac output, total hemoglobin, plasma volume, total blood volume, and relative measures of peripheral fatigue resistance were all unaltered with training. These results suggest that increases in mitochondrial content following six HIT sessions may facilitate improvements in respiratory capacity and oxygen extraction, and ultimately are responsible for the improvements in maximal whole body exercise capacity and endurance performance in previously untrained individuals.


Scandinavian Journal of Medicine & Science in Sports | 2013

Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists

Peter M. Christensen; Michael Nyberg; Jens Bangsbo

The present study examined if an elevated nitrate intake would improve VO2 kinetics, endurance, and repeated sprint capacity in elite endurance athletes.


Journal of Applied Physiology | 2010

Effect of 2-wk intensified training and inactivity on muscle Na+-K+ pump expression, phospholemman (FXYD1) phosphorylation, and performance in soccer players

Martin Thomassen; Peter M. Christensen; Thomas P. Gunnarsson; Lars Nybo; Jens Bangsbo

The present study examined muscle adaptations and alterations in performance of highly trained soccer players with intensified training or training cessation. Eighteen elite soccer players were, for a 2-wk period, assigned to either a group that performed high-intensity training with a reduction in the amount of training (HI, n = 7), or an inactivity group without training (IN, n = 11). HI improved (P < 0.05) performance of the 4th, 6th, and 10th sprint in a repeated 20-m sprint test, and IN reduced (P < 0.05) performance in the 5th to the 10th sprints after the 2-wk intervention period. In addition, the Yo-Yo intermittent recovery level 2 test performance of IN was lowered from 845 +/- 48 to 654 +/- 30 m. In HI, the protein expression of the Na(+)-K(+) pump alpha(2)-isoform was 15% higher (P < 0.05) after the intervention period, whereas no changes were observed in alpha(1)- and beta(1)-isoform expression. In IN, Na(+)-K(+) pump expression was not changed. In HI, the FXYD1ser68-to-FXYD1 ratio was 27% higher (P < 0.01) after the intervention period, and, in IN, the AB_FXYD1ser68 signal was 18% lower (P < 0.05) after inactivity. The change in FXYD1ser68-to-FXYD1 ratio was correlated (r(2) = 0.35; P < 0.05) with change in performance in repeated sprint test. The present data suggest that short-term intensified training, even for trained soccer players, can increase muscle Na(+)-K(+) pump alpha(2)-isoform expression, and that cessation of training for 2 wk does not affect the expression of Na(+)-K(+) pump isoforms. Resting phosphorylation status of the Na(+)-K(+) pump is changed by training and inactivity and may play a role in performance during repeated, intense exercise.


Medicine and Science in Sports and Exercise | 2011

V?O2 Kinetics and Performance in Soccer Players after Intense Training and Inactivity

Peter M. Christensen; Peter Krustrup; Thomas P. Gunnarsson; Kristian Kiilerich; Lars Nybo; Jens Bangsbo

PURPOSE The studys purpose was to examine the effects of a short-term period with intensified training or training cessation of trained soccer players on VO(2) kinetics at 75% maximal aerobic speed, oxidative enzymes, and performance in repeated high-intensity exercise. METHODS After the last match of the season, 18 elite soccer players were, for a 2-wk period, assigned to a high-intensity training group (n = 7) performing 10 training sessions mainly consisting of aerobic high-intensity training (8 × 2 min) and speed endurance training (10-12 × 30-s sprints) or a training cessation group (n = 11) that refrained from training. RESULTS For the training cessation group, VO(2) kinetics became slower (P < 0.05) with a larger time constant (τ = 21.5 ± 2.9 vs 23.8 ± 3.2 s (mean ± SD, before vs after)) and a larger mean response time (time delay + τ = 45.0 ± 1.8 vs 46.8 ± 2.2 s). The amount of muscle pyruvate dehydrogenase (17%, P < 0.01) and maximal activity of citrate synthase (12%) and 3-hydroxyacyl-CoA (18%, P < 0.05) were lowered. In addition, the fraction of slow twitch fibers (56% ± 18% vs 47% ± 15%, P < 0.05), Yo-Yo intermittent recovery level 2 test (845 ± 160 vs 654 ± 99 m), and the repeated sprint performance (33.41 ± 0.96 vs 34.11 ± 0.92 s, P < 0.01) were reduced. For the high-intensity training group, running economy was improved (P < 0.05), and the amount of pyruvate dehydrogenase (17%) and repeated sprint performance (33.44 ± 1.17 vs 32.81 ± 1.01 s) were enhanced (P < 0.05). CONCLUSIONS Inactivity slows VO(2) kinetics in association with a reduction of muscle oxidative capacity and repeated high-intensity running performance. In addition, intensified training of already well-trained athletes can improve mechanical efficiency and repeated sprint performance.


Medicine and Science in Sports and Exercise | 2012

Effect of additional speed endurance training on performance and muscle adaptations.

Thomas P. Gunnarsson; Peter M. Christensen; Kris Holse; Danny Christiansen; Jens Bangsbo

PURPOSE The present study examined the effect of additional speed endurance training (SET) during the season on muscle adaptations and performance of trained soccer players. METHODS Eighteen subelite soccer players performed one session with six to nine 30-s intervals at an intensity of 90%-95% of maximal intensity (SET) a week for 5 wk (SET intervention). Before and after the SET intervention, the players carried out the Yo-Yo intermittent recovery level 2 (Yo-Yo IR2) test, a sprint test (10 and 30 m), and an agility test. In addition, seven of the players had a resting muscle biopsy specimen taken and they carried out a running protocol on a motorized treadmill before and after the SET intervention. RESULTS After the SET intervention, the Yo-Yo IR2 test (n = 13) performance was 11% better (P < 0.05), whereas sprint (n = 15) and agility (n = 13) performances were unchanged. The expression of the monocarboxylate transporter 1 (n = 6) was 9% higher (P < 0.05). and the expression of the Na(+)/K(+) pump subunit β(1) (n = 6) was 13% lower (P < 0.05) after the SET intervention. The Na(+)/K(+) pump subunits α(1), α(2), as well as the monocarboxylate transporter 4 and the Na(+)/H(+) exchanger 1 (n = 6) were unchanged. After the SET intervention, the relative number of Type IIx fibers and oxygen consumption at 10 km.h(-1) were lower (P < 0.05), whereas VO(2max) was unchanged. CONCLUSIONS In conclusion, adding ∼30 min of SET once a week during the season for trained soccer players did lead to an improved ability to perform repeated high-intensity exercise, with a concomitant increase in the expression of monocarboxylate transporter 1 and an improved running economy.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Effect of intensified training on muscle ion kinetics, fatigue development, and repeated short-term performance in endurance-trained cyclists

Thomas P. Gunnarsson; Peter M. Christensen; Martin Thomassen; Lars Røpke Nielsen; Jens Bangsbo

The effects of intensified training in combination with a reduced training volume on muscle ion kinetics, transporters, and work capacity were examined. Eight well-trained cyclists replaced their regular training with speed-endurance training (12 × 30 s sprints) 2-3 times per week and aerobic high-intensity training (4-5 × 3-4 min at 90-100% of maximal heart rate) 1-2 times per week for 7 wk and reduced training volume by 70% (intervention period; IP). The duration of an intense exhaustive cycling bout (EX2; 368 ± 6 W), performed 2.5 min after a 2-min intense cycle bout (EX1), was longer (P < 0.05) after than before IP (4:16 ± 0:34 vs. 3:37 ± 0:28 min:s), and mean and peak power during a repeated sprint test improved (P < 0.05) by 4% and 3%, respectively. Femoral venous K(+) concentration in recovery from EX1 and EX2 was lowered (P < 0.05) after compared with before IP, whereas muscle interstitial K(+) concentration and net muscle K(+) release during exercise was unaltered. No changes in muscle lactate and H(+) release during and after EX1 and EX2 were observed, but the in vivo buffer capacity was higher (P < 0.05) after IP. Expression of the ATP-sensitive K(+) (KATP) channel (Kir6.2) decreased by IP, with no change in the strong inward rectifying K(+) channel (Kir2.1), muscle Na(+)-K(+) pump subunits, monocarboxylate transporters 1 and 4 (MCT1 and MCT4), and Na(+)/H(+) exchanger 1 (NHE1). In conclusion, 7 wk of intensified training with a reduced training volume improved performance during repeated intense exercise, which was associated with a greater muscle reuptake of K(+) and muscle buffer capacity but not with the amount of muscle ion transporters.


Journal of Applied Physiology | 2014

Concurrent speed endurance and resistance training improves performance, running economy and muscle NHE1 in moderately trained runners

Casper Skovgaard; Peter M. Christensen; Sonni Larsen; Thomas Rostgaard Andersen; Martin Thomassen; Jens Bangsbo

The purpose of this study was to examine whether speed endurance training (SET, repeated 30-s sprints) and heavy resistance training (HRT, 80-90% of 1 repetition maximum) performed in succession are compatible and lead to performance improvements in moderately trained endurance runners. For an 8-wk intervention period (INT) 23 male runners [maximum oxygen uptake (V̇O(2max)) 59 ± 1 ml·min(-1)·kg(-1); values are means ± SE] either maintained their training (CON, n = 11) or performed high-intensity concurrent training (HICT, n = 12) consisting of two weekly sessions of SET followed by HRT and two weekly sessions of aerobic training with an average reduction in running distance of 42%. After 4 wk of HICT, performance was improved (P < 0.05) in a 10-km run (42:30 ± 1:07 vs. 44:11 ± 1:08 min:s) with no further improvement during the last 4 wk. Performance in a 1,500-m run (5:10 ± 0:05 vs. 5:27 ± 0:08 min:s) and in the Yo-Yo IR2 test (706 ± 97 vs. 491 ± 65 m) improved (P < 0.001) only following 8 wk of INT. In HICT, running economy (189 ± 4 vs. 195 ± 4 ml·kg(-1)·km(-1)), muscle content of NHE1 (35%) and dynamic muscle strength was augmented (P < 0.01) after compared with before INT, whereas V̇O(2max), muscle morphology, capillarization, content of muscle Na(+)/K(+) pump subunits, and MCT4 were unaltered. No changes were observed in CON. The present study demonstrates that SET and HRT, when performed in succession, lead to improvements in both short- and long-term running performance together with improved running economy as well as increased dynamic muscle strength and capacity for muscular H(+) transport in moderately trained endurance runners.


Applied Physiology, Nutrition, and Metabolism | 2014

Caffeine, but not bicarbonate, improves 6 min maximal performance in elite rowers.

Peter M. Christensen; Mads H. Petersen; Signe N. Friis; Jens Bangsbo

This study examined the ergogenic effects in a 6 min maximal performance test (PT) on 12 elite rowers: 6 open-weight (mean ± SD; 25 ± 1 years, and 92 ± 3 kg) and 6 light-weight (25 ± 3 years, and 73 ± 6 kg), following supplementation with caffeine (CAF), sodium bicarbonate (SB), and the combination of both, in a double-blind randomized placebo (PLA) controlled design. PT was executed on 4 occasions, on separate days within a week, and in a non-fasted state, with standardized training being performed the day before PT. Protocols were as follows: (i) CAF, 3 mg/kg, 45 min prior to PT + calcium as SB-PLA; (ii) SB, 0.3 g/kg, 75 min prior to PT + dextrose as CAF-PLA; (iii) CAF + SB; and (iv) PLA; CAF-PLA + SB-PLA. The total distance in the CAF (1878 ± 97 m) and CAF + SB (1877 ± 97 m) was longer than in the PLA (1865 ± 104 m; P < 0.05) and SB (1860 ± 96 m; P < 0.01). The mean power in CAF (400 ± 58 W) and CAF + SB (400 ± 58 W) was higher than the PLA (393 ± 61 W; P < 0.05) and SB (389 ± 57 W; P < 0.01). In CAF and CAF + SB, power was higher (P < 0.05) relative to PLA in the last half (4-6 min) of PT. Trials with CAF were more effective in light-weight rowers (1.0% ± 0.8% improvement in distance; P < 0.05) than in open-weight rowers (0.3% ± 0.8%; P > 0.05). No difference between interventions was observed for readiness and stomach comfort before PT and perceived exertion during PT. This study demonstrates that caffeine ingestion does improve performance in elite rowing. In contrast sodium bicarbonate does not appear to be ergogenic, but it does not abolish the ergogenic effect of caffeine.


Experimental Physiology | 2014

Infusion of ATP increases leg oxygen delivery but not oxygen uptake in the initial phase of intense knee‐extensor exercise in humans

Michael Nyberg; Peter M. Christensen; Stefan P. Mortensen; Ylva Hellsten; Jens Bangsbo

What is the central question of this study? In the transition from rest to exercise, skeletal muscle blood flow, oxygen delivery and extraction of oxygen from the blood increase to accommodate the need for additional oxygen in the contracting fibres. To what extent skeletal muscle blood flow and oxygen delivery limit the rise in skeletal muscle oxygen uptake in the initial phase of intense exercise remains controversial. What is the main finding and its importance? A marked increase in blood flow and oxygen delivery, induced by infusion of ATP, did not affect the increase in oxygen uptake. This finding suggests that oxygen delivery does not limit skeletal muscle oxygen uptake in the initial phase of intense exercise.


Journal of Applied Physiology | 2016

A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics

Peter M. Christensen; Robert A. Jacobs; Thomas Christian Bonne; Daniela Flück; Jens Bangsbo; Carsten Lundby

The aim of the present study was to examine whether improvements in pulmonary oxygen uptake (V̇o2) kinetics following a short period of high-intensity training (HIT) would be associated with improved skeletal muscle mitochondrial function. Ten untrained male volunteers (age 26 ± 2 yr; mean ± SD) performed six HIT sessions (8-12 × 60 s at incremental test peak power; 271 ± 52 W) over a 2-wk period. Before and after the HIT period, V̇o2 kinetics was modeled during moderate-intensity cycling (110 ± 19 W). Mitochondrial function was assessed with high-resolution respirometry (HRR), and maximal activities of oxidative enzymes citrate synthase (CS) and cytochrome c oxidase (COX) were accordingly determined. In response to HIT, V̇o2 kinetics became faster (τ: 20.4 ± 4.4 vs. 28.9 ± 6.1 s; P < 0.01) and fatty acid oxidation (ETFP) and leak respiration (LN) both became elevated (P < 0.05). Activity of CS and COX did not increase in response to training. Both before and after the HIT period, fast V̇o2 kinetics (low τ values) was associated with large values for ETFP, electron transport system capacity (ETS), and electron flow specific to complex II (CIIP) (P < 0.05). Collectively, these findings support that selected measures of mitochondrial function obtained with HRR are important for fast V̇o2 kinetics and better markers than maximal oxidative enzyme activity in describing the speed of the V̇o2 response during moderate-intensity exercise.

Collaboration


Dive into the Peter M. Christensen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Nybo

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Nyberg

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonni Larsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Stefan P. Mortensen

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge