Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter M. Kraus is active.

Publication


Featured researches published by Peter M. Kraus.


Science | 2015

Measurement and laser control of attosecond charge migration in ionized iodoacetylene.

Peter M. Kraus; Benoît Mignolet; Denitsa Baykusheva; Alisa Rupenyan; Lubos Horný; Emmanuel Fowe Penka; Guido Grassi; Oleg I. Tolstikhin; Johannes Schneider; Frank Jensen; Lars Bojer Madsen; André D. Bandrauk; Françoise Remacle; Hans Jakob Wörner

Electronic movement flashing into view Numerous chemical processes begin with ionization: the ejection of an electron from a molecule. What happens in the immediate aftermath of that event? Kraus et al. explored this question in iodoacetylene by detecting and analyzing the spectrum of emitted high harmonics (see the Perspective by Ueda). They traced the migration of the residual positively charged hole along the molecular axis on a time scale faster than a quadrillionth of a second. They thereby characterized the capacity of a laser field to steer the holes motion in appropriately oriented molecules. Science, this issue p. 790; see also p. 740 High harmonics reveal fine details of electronic rearrangement in a molecule in the first instants after ionization. [Also see Perspective by Ueda] The ultrafast motion of electrons and holes after light-matter interaction is fundamental to a broad range of chemical and biophysical processes. We advanced high-harmonic spectroscopy to resolve spatially and temporally the migration of an electron hole immediately after ionization of iodoacetylene while simultaneously demonstrating extensive control over the process. A multidimensional approach, based on the measurement and accurate theoretical description of both even and odd harmonic orders, enabled us to reconstruct both quantum amplitudes and phases of the electronic states with a resolution of ~100 attoseconds. We separately reconstructed quasi–field-free and laser-controlled charge migration as a function of the spatial orientation of the molecule and determined the shape of the hole created by ionization. Our technique opens the prospect of laser control over electronic primary processes.


Physical Review Letters | 2014

Two-pulse field-free orientation reveals anisotropy of molecular shape resonance.

Peter M. Kraus; Denitsa Baykusheva; Hans Jakob Wörner

We report the observation of macroscopic field-free orientation, i.e., more than 73% of CO molecules pointing in the same direction. This is achieved through an all-optical scheme operating at high particle densities (>10(17)  cm(-3)) that combines one-color (ω) and two-color (ω+2ω) nonresonant femtosecond laser pulses. We show that the achieved orientation solely relies on the hyperpolarizability interaction as opposed to an ionization-depletion mechanism, thus, opening a wide range of applications. The achieved strong orientation enables us to reveal the molecular-frame anisotropies of the photorecombination amplitudes and phases caused by a shape resonance. The resonance appears as a local maximum in the even-harmonic emission around 28 eV. In contrast, the odd-harmonic emission is suppressed in this spectral region through the combined effects of an asymmetric photorecombination phase and a subcycle Stark effect, generic for polar molecules, that we experimentally identify.


Nature Communications | 2015

Observation of laser-induced electronic structure in oriented polyatomic molecules

Peter M. Kraus; Oleg I. Tolstikhin; Denitsa Baykusheva; Alisa Rupenyan; Johannes Schneider; Christer Z. Bisgaard; Toru Morishita; Frank Jensen; Lars Bojer Madsen; Hans Jakob Wörner

All attosecond time-resolved measurements have so far relied on the use of intense near-infrared laser pulses. In particular, attosecond streaking, laser-induced electron diffraction and high-harmonic generation all make use of non-perturbative light–matter interactions. Remarkably, the effect of the strong laser field on the studied sample has often been neglected in previous studies. Here we use high-harmonic spectroscopy to measure laser-induced modifications of the electronic structure of molecules. We study high-harmonic spectra of spatially oriented CH3F and CH3Br as generic examples of polar polyatomic molecules. We accurately measure intensity ratios of even and odd-harmonic orders, and of the emission from aligned and unaligned molecules. We show that these robust observables reveal a substantial modification of the molecular electronic structure by the external laser field. Our insights offer new challenges and opportunities for a range of emerging strong-field attosecond spectroscopies.


Nature Communications | 2017

Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium

Michael Zürch; Hung Tzu Chang; Lauren J. Borja; Peter M. Kraus; Scott K. Cushing; Andrey Gandman; Christopher J. Kaplan; Myoung Hwan Oh; James S. Prell; David Prendergast; C. D. Pemmaraju; Daniel M. Neumark; Stephen R. Leone

Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and simultaneously observed by ultrafast transient absorption spectroscopy in the extreme ultraviolet at the germanium M4,5 edge. We decompose the spectra into contributions of electronic state blocking and photo-induced band shifts at a carrier density of 8 × 1020 cm−3. Separate electron and hole relaxation times are observed as a function of hot carrier energies. A first-order electron and hole decay of ∼1 ps suggests a Shockley–Read–Hall recombination mechanism. The simultaneous observation of electrons and holes with extreme ultraviolet transient absorption spectroscopy paves the way for investigating few- to sub-femtosecond dynamics of both holes and electrons in complex semiconductor materials and across junctions.


Physical Review Letters | 2013

High-Harmonic Probing of Electronic Coherence in Dynamically Aligned Molecules

Peter M. Kraus; Song Bin Zhang; A. Gijsbertsen; Robert R. Lucchese; Nina Rohringer; Hans Jakob Wörner

We introduce and demonstrate a new approach to measuring coherent electron wave packets using high-harmonic spectroscopy. By preparing a molecule in a coherent superposition of electronic states, we show that electronic coherence opens previously unobserved high-harmonic-generation channels that connect distinct but coherently related electronic states. Performing the measurements in dynamically aligned nitric oxide molecules we observe the complex temporal evolution of the electronic coherence under coupling to nuclear motion. Choosing a weakly allowed transition to prepare the wave packet, we demonstrate an unprecedented sensitivity that arises from optical interference between coherent and incoherent pathways. This mechanism converts a 0.1% excitation fraction into a ∼20% signal modulation.


ChemPhysChem | 2013

Attosecond Nuclear Dynamics in the Ammonia Cation: Relation between High-Harmonic and Photoelectron Spectroscopies

Peter M. Kraus; Hans Jakob Wörner

We report measurements of the umbrella motion in the ammonia cation on the attosecond time scale. The motion is prepared by strong-field ionization and probed by photorecombination through the process of high-harmonic generation. Performing such measurements at multiple wavelengths (0.8, 1.44, 1.8 μm) enables us to follow the nuclear dynamics over a broad temporal range (0.8-3.8 fs). The intensity of the driving field is found to have a significant impact on the observed dynamics through the vibrational-state dependence of the strong-field ionization rates. We derive a general model that includes these effects and establishes a new link between high-harmonic spectroscopy and classical photoelectron spectroscopy. Our model reproduces the observed dynamics and their dependence on the intensity of the driving field. Moreover, the model predicts much richer nuclear dynamics on the few-fs timescale than most previous theories. The newly predicted features are shown to reflect the quantized vibronic level structure of the molecular cation.


Structural Dynamics | 2017

Charge migration and charge transfer in molecular systems

Hans Jakob Wörner; Christopher A. Arrell; Natalie Banerji; Andrea Cannizzo; Majed Chergui; Akshaya Kumar Das; Peter Hamm; Ursula Keller; Peter M. Kraus; Elisa Liberatore; Pablo López-Tarifa; Matteo Lucchini; Markus Meuwly; C. J. Milne; Jacques-E. Moser; Ursula Rothlisberger; Grigory Smolentsev; Joël Teuscher; Jeroen A. van Bokhoven; Oliver Wenger

The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.


Journal of Physics B | 2014

Two-pulse orientation dynamics and high-harmonic spectroscopy of strongly-oriented molecules

Peter M. Kraus; Denitsa Baykusheva; Hans Jakob Wörner

We present the detailed analysis of a new two-pulse orientation scheme that achieves macroscopic field-free orientation at the high particle densities required for attosecond and high-harmonic spectroscopies (Kraus et al 2013 arXiv:1311.3923). Carbon monoxide molecules are oriented by combining one-colour and delayed two-colour non-resonant femtosecond laser pulses. High-harmonic generation is used to probe the oriented wave-packet dynamics and reveals that a very high degree of orientation (Nup/Ntotal = 0.73–0.82) is achieved. We further extend this approach to orienting carbonyl sulphide molecules. We show that the present two-pulse scheme selectively enhances orientation created by the hyperpolarizability interaction whereas the ionization-depletion mechanism plays no role. We further control and optimize orientation through the delay between the one- and two-colour pump pulses. Finally, we demonstrate a complementary encoding of electronic-structure features, such as shape resonances, in the even- and odd-harmonic spectrum. The achieved progress makes two-pulse field-free orientation an attractive tool for a broad class of time-resolved measurements.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy

Marieke F. Jager; Christian Reinhold Ott; Peter M. Kraus; Christopher J. Kaplan; Winston Pouse; Robert E. Marvel; Richard F. Haglund; Daniel M. Neumark; Stephen R. Leone

Significance An insulator-to-metal phase transition is a process that changes a solid material from being electrically nonconductive to being conductive. The phase transition in vanadium dioxide is a well-studied example where the process can occur in less than a picosecond, making it exciting for ultrafast electronic switches. This paper measures a record speed for the phase transition of 26 fs into a long-lived excited state of the metal that persists out to >60 ps. The extreme UV absorption spectrum of the material is also measured and (together with the ultrafast timescale) belies a structural mechanism that has long been deliberated. The measured femtosecond timescale provides fundamental insight into the electronic speed limits of these complex phenomena. Coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M2,3 edge is used to track the insulator-to-metal phase transition in VO2. This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase, and measures the phase-transition dynamics in the insulating phase. An understanding of the VO2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V3+/d2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott–Hubbard-type mechanism is favored, as the observed timescales and d2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. The findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials.


Structural Dynamics | 2017

Ultrafast carrier thermalization and trapping in silicon-germanium alloy probed by extreme ultraviolet transient absorption spectroscopy

Michael Zürch; Hung-Tzu Chang; Peter M. Kraus; Scott K. Cushing; Lauren J. Borja; Andrey Gandman; Christopher J. Kaplan; Myoung Hwan Oh; James S. Prell; David Prendergast; C. D. Pemmaraju; Daniel M. Neumark; Stephen R. Leone

Semiconductor alloys containing silicon and germanium are of growing importance for compact and highly efficient photonic devices due to their favorable properties for direct integration into silicon platforms and wide tunability of optical parameters. Here, we report the simultaneous direct and energy-resolved probing of ultrafast electron and hole dynamics in a silicon-germanium alloy with the stoichiometry Si0.25Ge0.75 by extreme ultraviolet transient absorption spectroscopy. Probing the photoinduced dynamics of charge carriers at the germanium M4,5-edge (∼30 eV) allows the germanium atoms to be used as reporter atoms for carrier dynamics in the alloy. The photoexcitation of electrons across the direct and indirect band gap into conduction band (CB) valleys and their subsequent hot carrier relaxation are observed and compared to pure germanium, where the Ge direct (ΔEgap,Ge,direct=0.8 eV) and Si0.25Ge0.75 indirect gaps (ΔEgap,Si0.25Ge0.75,indirect=0.95 eV) are comparable in energy. In the alloy, comparable carrier lifetimes are observed for the X, L, and Γ valleys in the conduction band. A midgap feature associated with electrons accumulating in trap states near the CB edge following intraband thermalization is observed in the Si0.25Ge0.75 alloy. The successful implementation of the reporter atom concept for capturing the dynamics of the electronic bands by site-specific probing in solids opens a route to study carrier dynamics in more complex materials with femtosecond and sub-femtosecond temporal resolution.

Collaboration


Dive into the Peter M. Kraus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel M. Neumark

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hung-Tzu Chang

University of California

View shared research outputs
Top Co-Authors

Avatar

Michael Zürch

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge