Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter M. McCowan is active.

Publication


Featured researches published by Peter M. McCowan.


Medical Physics | 2012

Detection and correction for EPID and gantry sag during arc delivery using cine EPID imaging

Pejman Rowshanfarzad; Mahsheed Sabet; D.J. O'Connor; Peter M. McCowan; Boyd McCurdy; Peter B. Greer

PURPOSE Electronic portal imaging devices (EPIDs) have been studied and used for pretreatment and in-vivo dosimetry applications for many years. The application of EPIDs for dosimetry in arc treatments requires accurate characterization of the mechanical sag of the EPID and gantry during rotation. Several studies have investigated the effects of gravity on the sag of these systems but each have limitations. In this study, an easy experiment setup and accurate algorithm have been introduced to characterize and correct for the effect of EPID and gantry sag during arc delivery. METHODS Three metallic ball bearings were used as markers in the beam: two of them fixed to the gantry head and the third positioned at the isocenter. EPID images were acquired during a 360° gantry rotation in cine imaging mode. The markers were tracked in EPID images and a robust in-house developed MATLAB code was used to analyse the images and find the EPID sag in three directions as well as the EPID + gantry sag by comparison to the reference gantry zero image. The algorithm results were then tested against independent methods. The method was applied to compare the effect in clockwise and counter clockwise gantry rotations and different source-to-detector distances (SDDs). The results were monitored for one linear accelerator over a course of 15 months and six other linear-accelerators from two treatment centers were also investigated using this method. The generalized shift patterns were derived from the data and used in an image registration algorithm to correct for the effect of the mechanical sag in the system. The Gamma evaluation (3%, 3 mm) technique was used to investigate the improvement in alignment of cine EPID images of a fixed field, by comparing both individual images and the sum of images in a series with the reference gantry zero image. RESULTS The mechanical sag during gantry rotation was dependent on the gantry angle and was larger in the in-plane direction, although the patterns were not identical for various linear-accelerators. The reproducibility of measurements was within 0.2 mm over a period of 15 months. The direction of gantry rotation and SDD did not affect the results by more than 0.3 mm. Results of independent tests agreed with the algorithm within the accuracy of the measurement tools. When comparing summed images, the percentage of points with Gamma index <1 increased from 85.4% to 94.1% after correcting for the EPID sag, and to 99.3% after correction for gantry + EPID sag. CONCLUSIONS The measurement method and algorithms introduced in this study use cine-images, are highly accurate, simple, fast, and reproducible. It tests all gantry angles and provides a suitable automatic analysis and correction tool to improve EPID dosimetry and perform comprehensive linac QA for arc treatments.


Medical Physics | 2015

Validation of a method for in vivo 3D dose reconstruction for IMRT and VMAT treatments using on‐treatment EPID images and a model‐based forward‐calculation algorithm

Eric Van Uytven; Timothy van Beek; Peter M. McCowan; Krista Chytyk-Praznik; Peter B. Greer; Boyd McCurdy

PURPOSE Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). METHODS EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of the patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). RESULTS Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). CONCLUSIONS An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and patient data sets, as well as for dynamic IMRT and VMAT delivery techniques. Results indicate that the EPID dose reconstruction algorithm presented in this work is suitable for clinical implementation.


Journal of Applied Clinical Medical Physics | 2012

Gantry angle determination during arc IMRT: evaluation of a simple EPID‐based technique and two commercial inclinometers

Pejman Rowshanfarzad; Mahsheed Sabet; D.J. O'Connor; Peter M. McCowan; Boyd McCurdy; Peter B. Greer

The increasing popularity of intensity‐modulated arc therapy (IMAT) treatments requires specifically designed linac quality assurance (QA) programs. Gantry angle is one of the parameters that has a major effect on the outcome of IMAT treatments since dose reconstruction for patient‐specific QA relies on the gantry angle; therefore, it is essential to ensure its accuracy for correct delivery of the prescribed dose. In this study, a simple measurement method and algorithm are presented for QA of gantry angle measurements based on integrated EPID images acquired at distinct gantry angles and cine EPID images during an entire 360° arc. A comprehensive study was carried out to evaluate this method, as well as to evaluate two commercially available inclinometers (NG360 and IBA GAS supplied in conjunction with popular array dosimeters Delta4 and MatriXXEvolution, respectively) by comparing their simultaneous angle measurement results with the linac potentiometer readouts at five gantry speeds. In all tested measurement systems, the average differences with the reference angle data were less than 0.3° in static mode. In arc mode, at all tested gantry speeds the average difference was less than 0.1° for the IBA GAS and the proposed EPID‐based method, and 0.6° for the NG360 after correction for the inherent systematic time delay of the inclinometer. The gantry rotation speed measured by the three independent systems had an average deviation of about 0.01°/s from the nominal gantry speed. PACS numbers: 06.30.Bp; 87.56.Fc; 87.56.‐v


Journal of Applied Clinical Medical Physics | 2014

An investigation of gantry angle data accuracy for cine-mode EPID images acquired during arc IMRT

Peter M. McCowan; D. Rickey; Pejman Rowshanfarzad; Peter B. Greer; Will Ansbacher; Boyd McCurdy

EPID images acquired in cine mode during arc therapy have inaccurate gantry angles recorded in their image headers. In this work, methods were developed to assess the accuracy of the gantry potentiometer for linear accelerators. As well, assessments of the accuracy of other, more accessible, sources of gantry angle information (i.e., treatment log files, analysis of EPID image headers) were investigated. The methods used in this study are generally applicable to any linear accelerator unit, and have been demonstrated here with Clinac/Trilogy systems. Gantry angle data were simultaneously acquired using three methods: i) a direct gantry potentiometer measurement, ii) an incremental rotary encoder, and iii) a custom‐made radiographic gantry‐angle phantom which produced unique wire intersections as a function of gantry angle. All methods were compared to gantry angle data from the EPID image header and the linac MLC DynaLog file. The encoder and gantry‐angle phantom were used to validate the accuracy of the linacs potentiometer. The EPID image header gantry angles and the DynaLog file gantry angles were compared to the potentiometer. The encoder and gantry‐angle phantom mean angle differences with the potentiometer were 0.13∘±0.14∘ and 0.10∘±0.30∘, respectively. The EPID image header angles analyzed in this study were within ±1∘ of the potentiometer angles only 35% of the time. In some cases, EPID image header gantry angles disagreed by as much as 3° with the potentiometer. A time delay in frame acquisition was determined using the continuous acquisition mode of the EPID. After correcting for this time delay, 75% of the header angles, on average, were within ±1∘ of the true gantry angle, compared to an average of only 35% without the correction. Applying a boxcar smoothing filter to the corrected gantry angles further improved the accuracy of the header‐derived gantry angles to within ±1∘ for almost all images (99.4%). An angle accuracy of 0.11∘±0.04∘ was determined using a point‐by‐point comparison of the gantry angle data in the MLC DynaLog file and the potentiometer data. These simple correction methods can be easily applied to individual treatment EPID images in order to more accurately define the gantry angle. PACS numbers: 87.53.Kn, 87.55.T‐, 87.56.bd, 87.59.‐e


Physics in Medicine and Biology | 2017

A model-based 3D patient-specific pre-treatment QA method for VMAT using the EPID

Peter M. McCowan; G Asuni; T Van Beek; E Van Uytven; K Kujanpaa; B McCurdy

This study reports the development and validation of a model-based, 3D patient dose reconstruction method for pre-treatment quality assurance using EPID images. The method is also investigated for sensitivity to potential MLC delivery errors. Each cine-mode EPID image acquired during plan delivery was processed using a previously developed back-projection dose reconstruction model providing a 3D dose estimate on the CT simulation data. Validation was carried out using 24 SBRT-VMAT patient plans by comparing: (1) ion chamber point dose measurements in a solid water phantom, (2) the treatment planning system (TPS) predicted 3D dose to the EPID reconstructed 3D dose in a solid water phantom, and (3) the TPS predicted 3D dose to the EPID and our forward predicted reconstructed 3D dose in the patient (CT data). AAA and AcurosXB were used for TPS predictions. Dose distributions were compared using 3%/3 mm (95% tolerance) and 2%/2 mm (90% tolerance) γ-tests in the planning target volume (PTV) and 20% dose volumes. The average percentage point dose differences between the ion chamber and the EPID, AcurosXB, and AAA were 0.73  ±  1.25%, 0.38  ±  0.96% and 1.06  ±  1.34% respectively. For the patient (CT) dose comparisons, seven (3%/3 mm) and nine (2%/2 mm) plans failed the EPID versus AAA. All plans passed the EPID versus Acuros XB and the EPID versus forward model γ-comparisons. Four types of MLC sensitive errors (opening, shifting, stuck, and retracting), of varying magnitude (0.2, 0.5, 1.0, 2.0 mm), were introduced into six different SBRT-VMAT plans. γ-comparisons of the erroneous EPID dose and original predicted dose were carried out using the same criteria as above. For all plans, the sensitivity testing using a 3%/3 mm γ-test in the PTV successfully determined MLC errors on the order of 1.0 mm, except for the single leaf retraction-type error. A 2%/2 mm criteria produced similar results with two more additional detected errors.


Physica Medica | 2017

In vivo dosimetry for lung radiotherapy including SBRT

Boyd McCurdy; Peter M. McCowan

SBRT for lung cancer is being rapidly adopted as a treatment option in modern radiotherapy centres. This treatment is one of the most complex in common clinical use, requiring significant expertise and resources. It delivers a high dose per fraction (typically ∼6-30Gy/fraction) over few fractions. The complexity and high dose delivered in only a few fractions make powerful arguments for the application of in vivo dosimetry methods for these treatments to enhance patient safety. In vivo dosimetry is a group of techniques with a common objective - to estimate the dose delivered to the patient through a direct measurement of the treatment beam(s). In particular, methods employing an electronic portal imaging device have been intensely investigated over the past two decades. Treatment verification using in vivo dosimetry approaches has been shown to identify errors that would have been missed with other common quality assurance methods. With the addition of in vivo dosimetry to verify treatments, medical physicists and clinicians have a higher degree of confidence that the dose has been delivered to the patient as intended. In this review, the technical aspects and challenges of in vivo dosimetry for lung SBRT will be presented, focusing on transit dosimetry applications using electronic portal imaging devices (EPIDs). Currently available solutions will be discussed and published clinical experiences, which are very limited to date, will be highlighted.


Medical Physics | 2011

SU‐E‐T‐210: Precise Gantry Angle Determination for EPID Images during Rotational IMRT

Peter M. McCowan; D. Rickey; Pejman Rowshanfarzad; Will Ansbacher; Peter B. Greer; B McCurdy

Purpose: Utilization of an aSi EPID to develop an in vivo patient dose verification system for rotational IMRT (rIMRT) delivery requires accurate knowledge of gantry angle as a function of time. Currently the accuracy of the gantry angle stamp in the header of the EPIDimage is limited to approximately +/−3 degrees. This work investigates several unique methods for a more accurate determination of the gantry angle during rIMRT. Methods: Gantry angles were determined using: (1) an incremental rotary encoder attached to the rotational axis of the gantry, (2) a direct analogue‐to‐digital measurement of the gantry potentiometer, and (3) through EPIDimage analyses of an in‐house phantom (manufactured at sub‐millimeter precision). The phantom consists of a cylindrical acrylic frame with one wire wrapped helically around its surface and one straight wire traversing its central axis. This design creates EPIDimages with unique and identifiable wire intersection points as a function of gantry orientation. Analysis of the treatment console log files was compared to the above methods. Results: The gantry potentiometer is considered the most accurate gantry angle but is unavailable during treatment. The ClinacLog produced discrepancies of up to ±2 degrees, the DynaLog up to ±1 degrees, and the encoder up to ±0.5 degrees with respect to the potentiometer. Preliminary analysis comparing our phantom‐determined gantry angles with the encoder gantry angles showed agreement within ±0.5 degrees of each other for 85% of the data and differed at most by 1.3 degrees from each other. Conclusions: We have developed several techniques to determine gantry angle as a function of time during rIMRT. We have shown a strong agreement in gantry determination by our phantom and encoder. This investigation of gantry angle is critical to develop an accurate in vivo patient dose verification system for rIMRT delivery.


Medical Physics | 2010

Poster — Thur Eve — 51: An Investigation of Geometry Issues for EPID Dosimetry during Rotational IMRT

Peter M. McCowan; B McCurdy; Peter B. Greer; D. Rickey; Pejman Rowshanfarzad

INTRODUCTION: Amorphous‐silicon electronic portal imaging devices(EPIDs) have been established as useful tools for dosimetry. To accurately reconstruct the patient dose delivered during rotational IMRT, one must acquire time‐resolved EPIDimages as a function of gantry‐angle. Dose reconstruction accuracy is directly impacted by the accuracy of the geometry of the imaging system, including the gantry‐angle readout (i.e. source geometry) and the EPID support‐arm sag (i.e. imager geometry). This work investigates these two factors. METHODS: The EPID support‐arm sag was investigated through measurements performed on Varian E‐arm and R‐arm models at two institutes and employing two different analysis methods. One method imaged an isocentric ball‐bearing whose position was tracked over all gantry‐angles. The second method involved analysing field edges to obtain the field centre location of all images. Gantry‐angle accuracy was examined by comparing the gantry‐angle indicated at the treatment console readout to the gantry‐angle written to the EPID DICOM header. We developed a method of measuring gantry‐angle directly from the gantry‐angle potentiometer. RESULTS: The E‐arm showed maximum displacement of roughly 0.6mm (cross‐plane) and 0.8mm (in‐plane). R‐arm results were significantly worse, estimated at 8.5mm (cross‐plane) and 5.0mm (in‐plane). Gantry‐angle analysis demonstrated approximately 2 degrees of uncertainty in the gantry‐angle contained in the EPIDimage. A direct measurement of the gantry angle potentiometer was demonstrated. CONCLUSIONS: Two main factors affecting patient dose reconstruction using EPIDdosimetry have been investigated. EPID support‐arm sag can be measured (and corrected). Near real‐time gantry‐angle measurement can be performed through directly monitoring the potentiometer signal.


Medical Physics | 2014

Sci—Sat AM: Stereo — 01: 3D Pre-treatment Dose Verification for Stereotactic Body Radiation Therapy Patients

G Asuni; Timothy VanBeek; E VanUtyven; Peter M. McCowan; B McCurdy

Radical treatment techniques such as stereotactic body radiation therapy (SBRT) are becoming popular and they involve delivery of large doses in fewer fractions. Due to this feature of SBRT, a high-resolution, pre-treatment dose verification method that makes use of a 3D patient representation would be appropriate. Such a technique will provide additional information about dose delivered to the target volume(s) and organs-at-risk (OARs) in the patient volume compared to 2D verification methods. In this work, we investigate an electronic portal imaging device (EPID) based pre-treatment QA method which provides an accurate reconstruction of the 3D-dose distribution in the patient model. Customized patient plans are delivered ‘in air’ and the portal images are collected using the EPID in cine mode. The images are then analysed to determine an estimate of the incident energy fluence. This is then passed to a collapsed-cone convolution dose algorithm which reconstructs a 3D patient dose estimate on the CT imaging dataset. To date, the method has been applied to 5 SBRT patient plans. Reconstructed doses were compared to those calculated by the TPS. Reconstructed mean doses were mostly within 3% of those in the TPS. DVHs of target volumes and OARs compared well. The Chi pass rates using 3%/3mm in the high dose region are greater than 97% in all cases. These initial results demonstrate clinical feasibility and utility of a robust, efficient, effective and convenient pre-treatment QA method using EPID. Research sponsored in part by Varian Medical Systems.


Medical Physics | 2015

An in vivo dose verification method for SBRT–VMAT delivery using the EPID

Peter M. McCowan; E Van Uytven; T Van Beek; G Asuni; Boyd McCurdy

Collaboration


Dive into the Peter M. McCowan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

B McCurdy

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G Asuni

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Rickey

University of Manitoba

View shared research outputs
Top Co-Authors

Avatar

Arbind Dubey

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge