Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Michaely is active.

Publication


Featured researches published by Peter Michaely.


Nature | 2006

Nanospring behaviour of ankyrin repeats

Gwangrog Lee; Khadar Abdi; Yong Jiang; Peter Michaely; Vann Bennett; Piotr E. Marszalek

Ankyrin repeats are an amino-acid motif believed to function in protein recognition; they are present in tandem copies in diverse proteins in nearly all phyla. Ankyrin repeats contain antiparallel α-helices that can stack to form a superhelical spiral. Visual inspection of the extrapolated structure of 24 ankyrin-R repeats indicates the possibility of spring-like behaviour of the putative superhelix. Moreover, stacks of 17–29 ankyrin repeats in the cytoplasmic domains of transient receptor potential (TRP) channels have been identified as candidates for a spring that gates mechanoreceptors in hair cells as well as in Drosophila bristles. Here we report that tandem ankyrin repeats exhibit tertiary-structure-based elasticity and behave as a linear and fully reversible spring in single-molecule measurements by atomic force microscopy. We also observe an unexpected ability of unfolded repeats to generate force during refolding, and report the first direct measurement of the refolding force of a protein domain. Thus, we show that one of the most common amino-acid motifs has spring properties that could be important in mechanotransduction and in the design of nanodevices.


Trends in Cell Biology | 1992

The ANK repeat: a ubiquitous motif involved in macromolecular recognition

Peter Michaely; Vann Bennett

Many proteins rely on stable, noncovalent interactions with other macromolecules to perform their function. The identification of a repeated sequence motif, the ANK repeat, in diverse proteins whose common function involves binding to other proteins indicates one way nature may achieve a wide range of protein-protein interactions. In this article, we describe evidence that these ANK repeats are involved in the specific recognition of proteins and possibly DNA, and present a model for the folding of the motif.


Journal of Biological Chemistry | 2006

Cholesterol-regulated Translocation of NPC1L1 to the Cell Surface Facilitates Free Cholesterol Uptake

Liqing Yu; Shantaram Bharadwaj; J. Mark Brown; Yinyan Ma; Wei Du; Matthew A. Davis; Peter Michaely; Pingsheng Liu; Mark C. Willingham; Lawrence L. Rudel

Although NPC1L1 is required for intestinal cholesterol absorption, data demonstrating mechanisms by which this protein facilitates the process are few. In this study, a hepatoma cell line stably expressing human NPC1L1 was established, and cholesterol uptake was studied. A relationship between NPC1L1 intracellular trafficking and cholesterol uptake was apparent. At steady state, NPC1L1 proteins localized predominantly to the transferrin-positive endocytic recycling compartment, where free cholesterol also accumulated as revealed by filipin staining. Interestingly, acute cholesterol depletion induced with methyl-β-cyclodextrin stimulated relocation of NPC1L1 to the plasma membrane, preferentially to a newly formed “apical-like” subdomain. This translocation was associated with a remarkable increase in cellular cholesterol uptake, which in turn was dose-dependently inhibited by ezetimibe, a novel cholesterol absorption inhibitor that specifically binds to NPC1L1. These findings define a cholesterol-regulated endocytic recycling of NPC1L1 as a novel mechanism regulating cellular cholesterol uptake.


Journal of Biological Chemistry | 1999

Polarized Distribution of Endogenous Rac1 and RhoA at the Cell Surface

Peter Michaely; Chieko Mineo; Yun Shu Ying; Richard G. W. Anderson

Rac1 and RhoA regulate membrane ruffling and stress fiber formation. Both molecules appear to exert their control from the plasma membrane. In fibroblasts stimulated with platelet-derived growth factor or lysophosphatidic acid, the reorganization of the cytoskeleton begins at specific sites on the cell surface. We now report that endogenous Rac1 and RhoA also have a polarized distribution at the cell surface. Cell fractionation and immunogold labeling show that in quiescent fibroblasts both of these molecules are concentrated in caveolae, which are plasma membrane domains that are associated with actin-rich regions of the cell. Treatment of these cells with platelet-derived growth factor stimulated the recruitment of additional Rac1 and RhoA to caveolae fractions, while lysophosphatidic acid only caused the recruitment of RhoA. We could reconstitute the recruitment of RhoA using either whole cell lysates or purified caveolae. Surprisingly, pretreatment of the lysates with exoenzyme C3 shifted both resident and recruited RhoA from caveolae to noncaveolae membranes. The shift in location was not caused by inactivation of the RhoA effector domain. Moreover, chimeric proteins containing the C-terminal consensus site for Rac1 and RhoA prenylation were constitutively targeted to caveolae fractions. These results suggest that the polarized distribution of Rho family proteins at the cell surface involves an initial targeting of the protein to caveolae and a mechanism for retaining it at this site.


The EMBO Journal | 2002

Crystal structure of a 12 ANK repeat stack from human ankyrinR

Peter Michaely; Diana R. Tomchick; Mischa Machius; Richard G. W. Anderson

Ankyrins are multifunctional adaptors that link specific proteins to the membrane‐associated, spectrin–actin cytoskeleton. The N‐terminal, ‘membrane‐binding’ domain of ankyrins contains 24 ANK repeats and mediates most binding activities. Repeats 13–24 are especially active, with known sites of interaction for the Na/K ATPase, Cl/HCO3 anion exchanger, voltage‐gated sodium channel, clathrin heavy chain and L1 family cell adhesion molecules. Here we report the crystal structure of a human ankyrinR construct containing ANK repeats 13–24 and a portion of the spectrin‐binding domain. The ANK repeats are observed to form a contiguous spiral stack with which the spectrin‐binding domain fragment associates as an extended strand. The structural information has been used to construct models of all 24 repeats of the membrane‐binding domain as well as the interactions of the repeats with the Cl/HCO3 anion exchanger and clathrin. These models, together with available binding studies, suggest that ion transporters such as the anion exchanger associate in a large central cavity formed by the ANK repeat spiral, while clathrin and cell adhesion molecules associate with specific regions outside this cavity.


Journal of Biological Chemistry | 1995

The ANK Repeats of Erythrocyte Ankyrin Form Two Distinct but Cooperative Binding Sites for the Erythrocyte Anion Exchanger

Peter Michaely; Vann Bennett

The 24 ANK repeats of the membrane-binding domain of ankyrin form four folded subdomains of six ANK repeats each. These four repeat subdomains mediate interactions with at least seven different families of membrane proteins. In the erythrocyte, the main membrane target of ankyrin is the Cl/HCO anion exchanger. This report presents the first evidence that ankyrin contains two separate binding sites for anion exchanger dimers. One site utilizes repeat subdomain two (repeats 7-12) while the other requires both repeat subdomains three and four (repeats 13-24). The two sites are positively coupled with a Hill coefficient of 1.4. Since the anion exchanger exists as a dimer in the membrane, the presence of two binding sites on ankyrin allows ankyrin to interact with four anion exchangers simultaneously. These findings provide a direct demonstration of the versatility of ANK repeats in protein recognition, and have important implications for the organization of ankyrin-linked integral membrane proteins in erythrocytes as well as other cells.


Journal of Biological Chemistry | 2004

Inositol 1,4,5-Trisphosphate Receptor Localization and Stability in Neonatal Cardiomyocytes Requires Interaction with Ankyrin-B

Peter J. Mohler; Jonathan Q. Davis; L H Davis; Janis A. Hoffman; Peter Michaely; Vann Bennett

The molecular mechanisms required for inositol 1,4,5-trisphosphate receptor (InsP3R) targeting to specialized endoplasmic reticulum membrane domains are unknown. We report here a direct, high affinity interaction between InsP3R and ankyrin-B and demonstrate that this association is critical for InsP3R post-translational stability and localization in cultures of neonatal cardiomyocytes. Recombinant ankyrin-B membrane-binding domain directly interacts with purified cerebellar InsP3R (Kd = 2 nm). 220-kDa ankyrin-B co-immunoprecipitates with InsP3R in tissue extracts from brain, heart, and lung. Alanine-scanning mutagenesis of the ankyrin-B ANK (ankyrin repeat) repeat β-hairpin loop tips revealed that consecutive ANK repeat β-hairpin loop tips (repeats 22-24) are required for InsP3R interaction, thus providing the first detailed evidence of how ankyrin polypeptides associate with membrane proteins. Pulse-chase biosynthesis experiments demonstrate that reduction or loss of ankyrin-B in ankyrin-B (+/-) or ankyrin-B (-/-) neonatal cardiomyocytes leads to ∼3-fold reduction in half-life of newly synthesized InsP3R. Furthermore, interactions with ankyrin-B are required for InsP3R stability as abnormal InsP3R phenotypes, including mis-localization, and reduced half-life in ankyrin-B (+/-) cardiomyocytes can be rescued by green fluorescent protein (GFP)-220-kDa ankyrin-B but not by GFP-220-kDa ankyrin-B mutants, which do not associate with InsP3R. These new results provide the first physiological evidence of a molecular partner required for early post-translational stability of InsP3R.


Journal of Biological Chemistry | 2005

The Modular Adaptor Protein Autosomal Recessive Hypercholesterolemia (ARH) Promotes Low Density Lipoprotein Receptor Clustering into Clathrin-coated Pits

Rita Garuti; Christopher Jones; Wei Ping Li; Peter Michaely; Joachim Herz; Robert D. Gerard; Jonathan C. Cohen; Helen H. Hobbs

Autosomal recessive hypercholesterolemia is characterized by a cell type-specific defect in low density lipoprotein receptor (LDLR) endocytosis. LDLR-mediated uptake of LDL is impaired in the liver, but not in fibroblasts of subjects with this disorder. The disease is caused by mutations in ARH, which encodes a putative adaptor protein that interacts with the cytoplasmic tail of the LDLR, phospholipids, and two components of the clathrin endocytic machinery, clathrin and adaptor protein-2 (AP-2) in vitro. To determine the physiological relevance of these interactions, we examined the effect of mutations in the ARH on LDLR location and function in polarized hepatocytes (WIF-B). The integrity of the FDNPVY sequence in the LDLR cytoplasmic tail was required for ARH-associated LDLR clustering into clathrin-coated pits. The phosphotyrosine binding domain of ARH plus either the clathrin box or the AP-2 binding region were required for both clustering and internalization of the LDLR. Parallel studies performed in vivo with the same recombinant forms of ARH in livers of Arh-/- mice confirmed the relevance of the cell culture findings. These results demonstrate that ARH must bind the LDLR tail and either clathrin or AP-2 to promote receptor clustering and internalization of LDL.


Journal of Biological Chemistry | 1999

A Requirement for Ankyrin Binding to Clathrin during Coated Pit Budding

Peter Michaely; Adeela Kamal; Richard G. W. Anderson; Vann Bennett

Recent studies suggest that the mobility of clathrin-coated pits at the cell surface are restricted by an actin cytoskeleton and that there is an obligate reduction in the amount of spectrin on membranes during coated pit budding. The spectrin-actin cytoskeleton associates with membranes primarily through ankyrins, which interact with the cytoplasmic region of numerous integral membrane proteins. We now report that the fourth repeat domain (D4) of ankyrinR binds to the N-terminal domain of clathrin heavy chain with high affinity. Addition of peptides containing the D4 region inhibited clathrin-coated pit budding in vitro. In addition, microinjection of D4 containing peptides blocked the endocytosis of fluorescent low density lipoprotein (LDL). AnkyrinR peptides that contained repeat domains other than D4 had no effect on either in vitro budding or internalization of LDL. Finally, immunofluorescence shows that ankyrin is uniformly associated with endosomes that contain fluorescent LDL. These results suggest that ankyrin plays a role in the budding of clathrin-coated pits during endocytosis.


Journal of Clinical Investigation | 2007

Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia

Christopher Jones; Rita Garuti; Peter Michaely; Wei Ping Li; Nobuyo Maeda; Jonathan C. Cohen; Joachim Herz; Helen H. Hobbs

Genetic defects in LDL clearance result in severe hypercholesterolemia and premature atherosclerosis. Mutations in the LDL receptor (LDLR) cause familial hypercholesterolemia (FH), the most severe form of genetic hypercholesterolemia. A phenocopy of FH, autosomal recessive hypercholesterolemia (ARH), is due to mutations in an adaptor protein involved in LDLR internalization. Despite comparable reductions in LDL clearance rates, plasma LDL levels are substantially lower in ARH than in FH. To determine the metabolic basis for this difference, we examined the synthesis and catabolism of VLDL in murine models of FH (Ldlr(-/-)) and ARH (Arh(-/-)). The hyperlipidemic response to a high-sucrose diet was greatly attenuated in Arh(-/-) mice compared with Ldlr(-/-) mice despite similar rates of VLDL secretion. The rate of VLDL clearance was significantly higher in Arh(-/-) mice than in Ldlr(-/-) mice, suggesting that LDLR-dependent uptake of VLDL is maintained in the absence of ARH. Consistent with these findings, hepatocytes from Arh(-/-) mice (but not Ldlr(-/-) mice) internalized beta-migrating VLDL (beta-VLDL). These results demonstrate that ARH is not required for LDLR-dependent uptake of VLDL by the liver. The preservation of VLDL remnant clearance attenuates the phenotype of ARH and likely contributes to greater responsiveness to statins in ARH compared with FH.

Collaboration


Dive into the Peter Michaely's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard G. W. Anderson

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zhenze Zhao

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Helen H. Hobbs

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jonathan C. Cohen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rita Garuti

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shanica Pompey

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wei Ping Li

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hongyun Dong

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lopa Mishra

George Washington University

View shared research outputs
Researchain Logo
Decentralizing Knowledge