Peter Moffett
Université de Sherbrooke
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Moffett.
The EMBO Journal | 2003
Rui Lu; Isabelle Malcuit; Peter Moffett; M.T. Ruiz; Jack Peart; Ai-Jiuan Wu; John P. Rathjen; Abdelhafid Bendahmane; Louise Day; David C. Baulcombe
Virus‐induced gene silencing was used to assess the function of random Nicotiana benthamiana cDNAs in disease resistance. Out of 4992 cDNAs tested from a normalized library, there were 79 that suppressed a hypersensitive response (HR) associated with Pto‐mediated resistance against Pseudomonas syringae. However, only six of these clones blocked the Pto‐mediated suppression of P.syringae growth. The three clones giving the strongest loss of Pto resistance had inserts corresponding to HSP90 and also caused loss of Rx‐mediated resistance against potato virus X and N‐mediated tobacco mosaic virus resistance. The role of HSP90 as a cofactor of disease resistance is associated with stabilization of Rx protein levels and could be accounted for in part by SGT1 and other cofactors of disease resistance acting as co‐chaperones. This approach illustrates the potential benefits and limitations of RNA silencing in forward screens of gene function in plants.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Jack Peart; Rui Lu; Ari Sadanandom; Isabelle Malcuit; Peter Moffett; David C. Brice; Leif Schauser; Daniel A. W. Jaggard; Shunyuan Xiao; Mark J. Coleman; Max Dow; Jonathan D. G. Jones; Ken Shirasu; David C. Baulcombe
Homologues of the yeast ubiquitin ligase-associated protein SGT1 are required for disease resistance in plants mediated by nucleotide-binding site/leucine-rich repeat (NBS-LRR) proteins. Here, by silencing SGT1 in Nicotiana benthamiana, we extend these findings and demonstrate that SGT1 has an unexpectedly general role in disease resistance. It is required for resistance responses mediated by NBS-LRR and other R proteins in which pathogen-derived elicitors are recognized either inside or outside the host plant cell. A requirement also exists for SGT1 in nonhost resistance in which all known members of a host species are resistant against every characterized isolate of a pathogen. Our findings show that silencing SGT1 affects diverse types of disease resistance in plants and support the idea that R protein-mediated and nonhost resistance may involve similar mechanisms.
The EMBO Journal | 2002
Peter Moffett; Garry Farnham; Jack Peart; David C. Baulcombe
Many plant disease resistance (R) genes encode proteins predicted to have an N‐terminal coiled‐coil (CC) domain, a central nucleotide‐binding site (NBS) domain and a C‐terminal leucine‐rich repeat (LRR) domain. These CC–NBS–LRR proteins recognize specific pathogen‐derived products and initiate a resistance response that often includes a type of cell death known as the hypersensitive response (HR). Co‐expression of the potato CC–NBS–LRR protein Rx and its elicitor, the PVX coat protein (CP), results in a rapid HR. Surprisingly, co‐expression of the LRR and CC–NBS as separate domains also resulted in a CP‐dependent HR. Likewise, the CC domain complemented a version of Rx lacking this domain (NBS–LRR). Correspondingly, the LRR domain interacted physically in planta with the CC–NBS, as did CC with NBS–LRR. Both interactions were disrupted in the presence of CP. However, the interaction between CC and NBS–LRR was dependent on a wild‐type P‐loop motif, whereas the interaction between CC–NBS and LRR was not. We propose that activation of Rx entails sequential disruption of at least two intramolecular interactions.
The Plant Cell | 2006
Gregory J. Rairdan; Peter Moffett
Plant nucleotide binding and leucine-rich repeat (NB-LRR) proteins contain a region of homology known as the ARC domain located between the NB and LRR domains. Structural modeling suggests that the ARC region can be subdivided into ARC1 and ARC2 domains. We have used the potato (Solanum tuberosum) Rx protein, which confers resistance to Potato virus X (PVX), to investigate the function of the ARC region. We demonstrate that the ARC1 domain is required for binding of the Rx N terminus to the LRR domain. Domain-swap experiments with Rx and a homologous disease resistance gene, Gpa2, showed that PVX recognition localized to the C-terminal half of the LRR domain. However, inappropriate pairings of LRR and ARC2 domains resulted in autoactive molecules. Thus, the ARC2 domain is required to condition an autoinhibited state in the absence of elicitor as well as for the subsequent elicitor-induced activation. Our data suggest that the ARC region, through its interaction with the LRR, translates elicitor-induced modulations of the C terminus into a signal initiation event. Furthermore, we demonstrate that physical disruption of the LRR–ARC interaction is not required for signal initiation. We propose instead that this activity can lead to multiple rounds of elicitor recognition, providing a means of signal amplification.
Molecular Plant-microbe Interactions | 2012
Aureliano Bombarely; Hernan G. Rosli; Julia Vrebalov; Peter Moffett; Lukas A. Mueller; Gregory B. Martin
Nicotiana benthamiana is a widely used model plant species for the study of fundamental questions in molecular plant-microbe interactions and other areas of plant biology. This popularity derives from its well-characterized susceptibility to diverse pathogens and, especially, its amenability to virus-induced gene silencing and transient protein expression methods. Here, we report the generation of a 63-fold coverage draft genome sequence of N. benthamiana and its availability on the Sol Genomics Network for both BLAST searches and for downloading to local servers. The estimated genome size of N. benthamiana is 3 Gb (gigabases). The current assembly consists of approximately 141,000 scaffolds, spanning 2.6 Gb with 50% of the genome sequence contained within scaffolds >89 kilobases. Of the approximately 16,000 N. benthamiana unigenes available in GenBank, >90% are represented in the assembly. The usefulness of the sequence was demonstrated by the retrieval of N. benthamiana orthologs for 24 immunity-associated genes from other species including Ago2, Ago7, Bak1, Bik1, Crt1, Fls2, Pto, Prf, Rar1, and mitogen-activated protein kinases. The sequence will also be useful for comparative genomics in the Solanaceae family as shown here by the discovery of microsynteny between N. benthamiana and tomato in the region encompassing the Pto and Prf genes.
The Plant Cell | 2008
Gregory J. Rairdan; Sarah M. Collier; Melanie A. Sacco; Thomas T. Baldwin; Teresa Boettrich; Peter Moffett
Plant genomes encode large numbers of nucleotide binding and leucine-rich repeat (NB-LRR) proteins, some of which mediate the recognition of pathogen-encoded proteins. Following recognition, the initiation of a resistance response is thought to be mediated by the domains present at the N termini of NB-LRR proteins, either a Toll and Interleukin-1 Receptor or a coiled-coil (CC) domain. In order to understand the role of the CC domain in NB-LRR function, we have undertaken a systematic structure–function analysis of the CC domain of the potato (Solanum tuberosum) CC-NB-LRR protein Rx, which confers resistance to Potato virus X. We show that the highly conserved EDVID motif of the CC domain mediates an intramolecular interaction that is dependent on several domains within the rest of the Rx protein, including the NB and LRR domains. Other conserved and nonconserved regions of the CC domain mediate the interaction with the Ran GTPase–activating protein, RanGAP2, a protein required for Rx function. Furthermore, we show that the Rx NB domain is sufficient for inducing cell death typical of hypersensitive plant resistance responses. We describe a model of CC-NB-LRR function wherein the LRR and CC domains coregulate the signaling activity of the NB domain in a recognition-specific manner.
PLOS Pathogens | 2009
Melanie A. Sacco; Kamila Koropacka; Eric Grenier; Marianne J. Jaubert; Alexandra Blanchard; Aska Goverse; Geert Smant; Peter Moffett
Plant NB-LRR proteins confer robust protection against microbes and metazoan parasites by recognizing pathogen-derived avirulence (Avr) proteins that are delivered to the host cytoplasm. Microbial Avr proteins usually function as virulence factors in compatible interactions; however, little is known about the types of metazoan proteins recognized by NB-LRR proteins and their relationship with virulence. In this report, we demonstrate that the secreted protein RBP-1 from the potato cyst nematode Globodera pallida elicits defense responses, including cell death typical of a hypersensitive response (HR), through the NB-LRR protein Gpa2. Gp-Rbp-1 variants from G. pallida populations both virulent and avirulent to Gpa2 demonstrated a high degree of polymorphism, with positive selection detected at numerous sites. All Gp-RBP-1 protein variants from an avirulent population were recognized by Gpa2, whereas virulent populations possessed Gp-RBP-1 protein variants both recognized and non-recognized by Gpa2. Recognition of Gp-RBP-1 by Gpa2 correlated to a single amino acid polymorphism at position 187 in the Gp-RBP-1 SPRY domain. Gp-RBP-1 expressed from Potato virus X elicited Gpa2-mediated defenses that required Ran GTPase-activating protein 2 (RanGAP2), a protein known to interact with the Gpa2 N terminus. Tethering RanGAP2 and Gp-RBP-1 variants via fusion proteins resulted in an enhancement of Gpa2-mediated responses. However, activation of Gpa2 was still dependent on the recognition specificity conferred by amino acid 187 and the Gpa2 LRR domain. These results suggest a two-tiered process wherein RanGAP2 mediates an initial interaction with pathogen-delivered Gp-RBP-1 proteins but where the Gpa2 LRR determines which of these interactions will be productive.
Molecular Plant-microbe Interactions | 2011
Sarah M. Collier; Louis-Philippe Hamel; Peter Moffett
Plant genomes encode large numbers of nucleotide-binding, leucine-rich repeat (NB-LRR) proteins, many of which are active in pathogen detection and defense response induction. NB-LRR proteins fall into two broad classes: those with a Toll and interleukin-1 receptor (TIR) domain at their N-terminus and those with a coiled-coil (CC) domain at the N-terminus. Within CC-NB-LRR-encoding genes, one basal clade is distinguished by having CC domains resembling the Arabidopsis thaliana RPW8 protein, which we refer to as CCR domains. Here, we show that CCR-NB-LRR-encoding genes are present in the genomes of all higher plants surveyed, and that they comprise two distinct subgroups: one typified by the Nicotiana benthamiana N-required gene 1 (NRG1) protein and the other typified by the Arabidopsis activated disease resistance gene 1 (ADR1) protein. We further report that, in contrast to CC-NB-LRR proteins, the CCR domains of both NRG1- and ADR1-like proteins are sufficient for the induction of defense responses, and that this activity appears to be SGT1-independent. Additionally, we report the apparent absence of both NRG1 homologs and TIR-NB-LRR-encoding genes from the dicot Aquilegia coerulea and the dicotyledonous order Lamiales as well as from monocotyledonous species. This strong correlation in occurrence is suggestive of a functional relationship between these two classes of NB-LRR proteins.
Plant Physiology | 2011
Marianne J. Jaubert; Saikat Bhattacharjee; Alexandre F.S. Mello; Keith L. Perry; Peter Moffett
RNA-silencing mechanisms control many aspects of gene regulation including the detection and degradation of viral RNA through the action of, among others, Dicer-like and Argonaute (AGO) proteins. However, the extent to which RNA silencing restricts virus host range has been difficult to separate from other factors that can affect virus-plant compatibility. Here we show that Potato virus X (PVX) can infect Arabidopsis (Arabidopsis thaliana), which is normally a nonhost for PVX, if coinfected with a second virus, Pepper ringspot virus. Here we show that the pepper ringspot virus 12K protein functions as a suppressor of silencing that appears to enable PVX to infect Arabidopsis. We also show that PVX is able to infect Arabidopsis Dicer-like mutants, indicating that RNA silencing is responsible for Arabidopsis nonhost resistance to PVX. Furthermore, we find that restriction of PVX on Arabidopsis also depends on AGO2, suggesting that this AGO protein has evolved to specialize in antiviral defenses.
Advances in Virus Research | 2009
Peter Moffett
One branch of plant innate immunity is mediated through what is traditionally known as race-specific or gene-for-gene resistance wherein the outcome of an attempted infection is determined by the genotypes of both the host and the pathogen. Dominant plant disease resistance (R) genes confer resistance to a variety of biotrophic pathogens, including viruses, encoding corresponding dominant avirulence (Avr) genes. R genes are among the most highly variable plant genes known, both within and between populations. Plant genomes encode hundreds of R genes that code for NB-LRR proteins, so named because they posses nucleotide-binding (NB) and leucine-rich repeat (LRR) domains. Many matching pairs of NB-LRR and Avr proteins have been identified as well as cellular proteins that mediate R/Avr interactions, and the molecular analysis of these interactions have led to the formulation of models of how products of R genes recognize pathogens. Data from multiple NB-LRR systems indicate that the LRR domains of NB-LRR proteins determine recognition specificity. However, recent evidence suggests that NB-LRR proteins have co-opted cellular recognition co-factors that mediate interactions between Avr proteins and the N-terminal domains of NB-LRR proteins.
Collaboration
Dive into the Peter Moffett's collaboration.
National Institute for Biotechnology and Genetic Engineering
View shared research outputs