Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter N. Cockerill is active.

Publication


Featured researches published by Peter N. Cockerill.


Nature Medicine | 2010

Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma

Björn Lamprecht; Korden Walter; Stephan Kreher; Raman Kumar; Michael Hummel; Dido Lenze; Karl Köchert; Mohamed Amine Bouhlel; Julia Richter; Eric Soler; Ralph Stadhouders; Korinna Jöhrens; Wurster Kd; David F. Callen; Michael F Harte; Maciej Giefing; Rachael Barlow; Harald Stein; Ioannis Anagnostopoulos; Martin Janz; Peter N. Cockerill; Reiner Siebert; Bernd Dörken; Constanze Bonifer; Stephan Mathas

Mammalian genomes contain many repetitive elements, including long terminal repeats (LTRs), which have long been suspected to have a role in tumorigenesis. Here we present evidence that aberrant LTR activation contributes to lineage-inappropriate gene expression in transformed human cells and that such gene expression is central for tumor cell survival. We show that B cell–derived Hodgkins lymphoma cells depend on the activity of the non-B, myeloid-specific proto-oncogene colony-stimulating factor 1 receptor (CSF1R). In these cells, CSF1R transcription initiates at an aberrantly activated endogenous LTR of the MaLR family (THE1B). Derepression of the THE1 subfamily of MaLR LTRs is widespread in the genome of Hodgkins lymphoma cells and is associated with impaired epigenetic control due to loss of expression of the corepressor CBFA2T3. Furthermore, we detect LTR-driven CSF1R transcripts in anaplastic large cell lymphoma, in which CSF1R is known to be expressed aberrantly. We conclude that LTR derepression is involved in the pathogenesis of human lymphomas, a finding that might have diagnostic, prognostic and therapeutic implications.


Molecular and Cellular Biology | 1995

Human granulocyte-macrophage colony-stimulating factor enhancer function is associated with cooperative interactions between AP-1 and NFATp/c.

Peter N. Cockerill; Andrew G. Bert; F Jenkins; G R Ryan; M F Shannon; M A Vadas

The promoter of the human granulocyte-macrophage colony-stimulating factor gene is regulated by an inducible upstream enhancer. The enhancer encompasses three previously defined binding sites for the transcription factor NFAT (GM170, GM330, and GM550) and a novel NFAT site defined here as the GM420 element. While there was considerable redundancy within the enhancer, the GM330, GM420, and GM550 motifs each functioned efficiently in isolation as enhancer elements and bound NFATp and AP-1 in a highly cooperative fashion. These three NFAT sites closely resembled the distal interleukin-2 NFAT site, and methylation interference assays further defined GGA(N)9TCA as a minimum consensus sequence for this family of NFAT sites. By contrast, the GM170 site, which also had conserved GGA and TCA motifs but in which these motifs were separated by 15 bases, supported strong independent but no cooperative binding of AP-1 and NFATp, and this site functioned poorly as an enhancer element. While both the GM330 and GM420 elements were closely associated with the inducible DNase I-hypersensitive site within the enhancer, the GM420 element was the only NFAT site located within a 160-bp HincII-BalI fragment defined by deletion analysis as the essential core of the enhancer. The GM420 element was unusual, however, in containing a high-affinity NFATp/c-binding sequence (TGGAAAGA) immediately upstream of the sequence TGACATCA which more closely resembled a cyclic AMP response-like element than an AP-1 site. We suggest that the cooperative binding of NFATp/c and AP-1 requires a particular spacing of sites and that their cooperativity and induction via independent pathways ensure very tight regulation of the granulocyte-macrophage colony-stimulating factor enhancer.


Molecular Cell | 2008

The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription.

Pascal Lefevre; James Witham; Claire Lacroix; Peter N. Cockerill; Constanze Bonifer

Summary Transcription of the lysozyme gene is rapidly induced by proinflammatory stimuli such as treatment with bacterial lipopolysaccharide (LPS). Here we show that this induction involves both the relief of repression mediated by the enhancer-blocking protein CTCF that binds to a negative regulatory element at −2.4 kb, and the activation of two flanking enhancer elements. The downstream enhancer has promoter activity, and LPS stimulation initiates the transient synthesis of a noncoding RNA (LINoCR) transcribed through the −2.4 kb element. Expression of LINoCR is correlated with IKKα recruitment, histone H3 phosphoacetylation in the transcribed region, the repositioning of a nucleosome over the CTCF binding site, and, eventually, CTCF eviction. Each of these events requires transcription elongation. Our data reveal a transcription-dependent mechanism of chromatin remodeling that switches a cis-regulatory region from a repressive to an active conformation.


Leukemia | 2012

Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding

Anetta Ptasinska; Salam A. Assi; D Mannari; Sally R. James; Daniel Williamson; J Dunne; Maarten Hoogenkamp; Mengchu Wu; M Care; Hesta McNeill; Pierre Cauchy; M Cullen; R M Tooze; Daniel G. Tenen; Bryan D. Young; Peter N. Cockerill; David R. Westhead; Olaf Heidenreich; Constanze Bonifer

The t(8;21) translocation fuses the DNA-binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape, we measured genome-wide RUNX1- and RUNX1/ETO-bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. To this end, we determined dynamic alterations of histone acetylation, RNA Polymerase II binding and RUNX1 occupancy in the presence or absence of RUNX1/ETO using a knockdown approach. Combined global assessments of chromatin accessibility and kinetic gene expression data show that RUNX1/ETO controls the expression of important regulators of hematopoietic differentiation and self-renewal. We show that selective removal of RUNX1/ETO leads to a widespread reversal of epigenetic reprogramming and a genome-wide redistribution of RUNX1 binding, resulting in the inhibition of leukemic proliferation and self-renewal, and the induction of differentiation. This demonstrates that RUNX1/ETO represents a pivotal therapeutic target in AML.


Immunity | 1997

A T Cell–Specific Enhancer in the Interleukin-3 Locus Is Activated Cooperatively by Oct and NFAT Elements within a DNase I–Hypersensitive Site

Kym N. Duncliffe; Andrew G. Bert; Mathew A. Vadas; Peter N. Cockerill

Interleukin-3 (IL-3) is a cytokine that is expressed primarily in activated T cells. Here we identified an inducible T cell-specific enhancer 14 kb upstream of the IL-3 gene that responded to activation of T cell receptor signaling pathways. The IL-3 enhancer spanned an inducible cyclosporin A-sensitive DNase I-hypersensitive site found only in T cells. Four NFAT-like elements exist within the enhancer. The two most active NFAT-like elements were located at the center of the DNase I-hypersensitive site. One of these NFAT-like elements encompassed overlapping Oct- and NFATp/c-binding sites, which functioned in a highly synergistic manner. We suggest that the T cell-specific expression of the IL-3 gene is partly controlled through the enhancer by cooperation between Oct and NFAT family proteins.


Molecular and Cellular Biology | 2004

Granulocyte-macrophage colony-stimulating factor enhancer activation requires cooperation between NFAT and AP-1 elements and is associated with extensive nucleosome reorganization

Brett V. Johnson; Andrew G. Bert; Gregory R. Ryan; Antony Condina; Peter N. Cockerill

ABSTRACT The human granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is activated by an NFAT-dependent enhancer forming an inducible DNase I hypersensitive (DH) site. The enhancer core comprising the DH site contains the GM330 and GM420 elements that bind NFAT and AP-1 cooperatively. Here we demonstrate that both elements are essential for enhancer activity and that Sp1 and AML1 sites in the enhancer become occupied in vivo only after activation. Chromatin structure analysis revealed that the GM-CSF enhancer core elements are divided between two adjacent nucleosomes that become destabilized and highly accessible after activation. Inducible chromatin reorganization was not restricted to the enhancer core but extended across a 3-kb domain of mobilized nucleosomes, within which the nucleosome repeat length was compressed from approximately 185 to 150 bp. The GM420 element is a high-affinity site that binds NFAT independently of AP-1 but depends on the linked AP-1 site for enhancer function. Nevertheless, just the NFAT motif from the GM420 element was sufficient to form a DH site within chromatin even in the absence of the AP-1 site. Hence, NFAT has the potential to cooperate with other transcription factors by promoting chromatin remodelling and increasing accessibility at inducible regulatory elements.


Cell Reports | 2014

Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal.

Anetta Ptasinska; Salam A. Assi; Natalia Martinez-Soria; Maria Rosaria Imperato; Jason Piper; Pierre Cauchy; Anna Pickin; Sally R. James; Maarten Hoogenkamp; Dan Williamson; Mengchu Wu; Daniel G. Tenen; Sascha Ott; David R. Westhead; Peter N. Cockerill; Olaf Heidenreich; Constanze Bonifer

Summary Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq) to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21) cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion. Perturbation of this equilibrium in t(8;21) cells by RUNX1/ETO depletion leads to a global redistribution of transcription factor complexes within preexisting open chromatin, resulting in the formation of a transcriptional network that drives myeloid differentiation. Our work demonstrates on a genome-wide level that the extent of impaired myeloid differentiation in t(8;21) is controlled by the dynamic balance between RUNX1/ETO and RUNX1 activities through the repression of transcription factors that drive differentiation.


Molecular and Cellular Biology | 2007

The Pu.1 locus is differentially regulated at the level of chromatin structure and noncoding transcription by alternate mechanisms at distinct developmental stages of hematopoiesis

Maarten Hoogenkamp; Hanna Krysinska; Richard Ingram; Gang Huang; Rachael Barlow; Deborah Clarke; Alexander K. Ebralidze; Pu Zhang; Hiromi Tagoh; Peter N. Cockerill; Daniel G. Tenen; Constanze Bonifer

ABSTRACT The Ets family transcription factor PU.1 is crucial for the regulation of hematopoietic development. Pu.1 is activated in hematopoietic stem cells and is expressed in mast cells, B cells, granulocytes, and macrophages but is switched off in T cells. Many of the transcription factors regulating Pu.1 have been identified, but little is known about how they organize Pu.1 chromatin in development. We analyzed the Pu.1 promoter and the upstream regulatory element (URE) using in vivo footprinting and chromatin immunoprecipitation assays. In B cells, Pu.1 was bound by a set of transcription factors different from that in myeloid cells and adopted alternative chromatin architectures. In T cells, Pu.1 chromatin at the URE was open and the same transcription factor binding sites were occupied as in B cells. The transcription factor RUNX1 was bound to the URE in precursor cells, but binding was down-regulated in maturing cells. In PU.1 knockout precursor cells, the Ets factor Fli-1 compensated for the lack of PU.1, and both proteins could occupy a subset of Pu.1 cis elements in PU.1-expressing cells. In addition, we identified novel URE-derived noncoding transcripts subject to tissue-specific regulation. Our results provide important insights into how overlapping, but different, sets of transcription factors program tissue-specific chromatin structures in the hematopoietic system.


Molecular and Cellular Biology | 2007

A Modular Enhancer Is Differentially Regulated by GATA and NFAT Elements That Direct Different Tissue-Specific Patterns of Nucleosome Positioning and Inducible Chromatin Remodeling

Andrew G. Bert; Brett V. Johnson; Euan W. Baxter; Peter N. Cockerill

ABSTRACT We investigated alternate mechanisms employed by enhancers to position and remodel nucleosomes and activate tissue-specific genes in divergent cell types. We demonstrated that the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene enhancer is modular and recruits different sets of transcription factors in T cells and myeloid cells. The enhancer recruited distinct inducible tissue-specific enhanceosome-like complexes and directed nucleosomes to different positions in these cell types. In undifferentiated T cells, the enhancer was activated by inducible binding of two NFAT/AP-1 complexes which disrupted two specifically positioned nucleosomes (N1 and N2). In myeloid cells, the enhancer was remodeled by GATA factors which constitutively displaced an upstream nucleosome (N0) and cooperated with inducible AP-1 elements to activate transcription. In mast cells, which express both GATA-2 and NFAT, these two pathways combined to activate the enhancer and generate high-level gene expression. At least 5 kb of the GM-CSF locus was organized as an array of nucleosomes with fixed positions, but the enhancer adopted different nucleosome positions in T cells and mast cells. Furthermore, nucleosomes located between the enhancer and promoter were mobilized upon activation in an enhancer-dependent manner. These studies reveal that distinct tissue-specific mechanisms can be used either alternately or in combination to activate the same enhancer.


Journal of Immunology | 2002

The Human IL-3 Locus Is Regulated Cooperatively by Two NFAT-Dependent Enhancers That Have Distinct Tissue-Specific Activities

Abbas Hawwari; Joanna Burrows; Mathew A. Vadas; Peter N. Cockerill

The human IL-3 gene is expressed by activated T cells, mast cells, and eosinophils. We previously identified an enhancer 14 kb upstream of the IL-3 gene, but this element only functioned in a subset of T cells and not in mast cells. To identify additional mechanisms governing IL-3 gene expression, we mapped DNase I hypersensitive (DH) sites and evolutionarily conserved DNA sequences in the IL-3 locus. The most conserved sequence lies 4.5 kb upstream of the IL-3 gene and it encompassed an inducible cyclosporin A-sensitive DH site. A 245-bp fragment spanning this DH site functioned as a cyclosporin A-sensitive enhancer, and was induced by calcium and kinase signaling pathways in both T cells and mast cells via an array of three NFAT sites. The enhancer also encompassed AML1, AP-1, and Sp1 binding sites that potentially mediate function in both T and myeloid lineage cells, but these sites were not required for in vitro enhancer function in T cells. In stably transfected T cells, the −4.5-kb enhancer cooperated with the −14-kb enhancer to activate the IL-3 promoter. Hence, the IL-3 gene is regulated by two enhancers that have distinct but overlapping tissue specificities. We also identified a prominent constitutive DH site at −4.1 kb in T cells, mast cells, and CD34+ myeloid cells. This element lacked in vitro enhancer function, but may have a developmental role because it appears to be the first DH site to exist upstream of the IL-3 gene during hemopoietic development before IL-3 expression.

Collaboration


Dive into the Peter N. Cockerill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Cauchy

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Andrew G. Bert

Institute of Medical and Veterinary Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salam A. Assi

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Pickin

University of Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge