Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Nick is active.

Publication


Featured researches published by Peter Nick.


Planta | 1990

Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls.

Peter Nick; R. Bergfeld; Eberhard Schäfer; Peter Schopfer

Auxin (indole-3-acetic acid) controls the orientation of cortical microtubes (MT) at the outer wall of the outer epidermis of growing maize coleoptiles (Bergfeld, R., Speth, V., Schopfer, P., 1988, Bot. Acta101, 57–67). A detailed time course of MT reorientation, determined by labeling MT with fluorescent antibodies, revealed that the auxin-mediated movement of MT from the longitudinal to the transverse direction starts after less than 15 min and is completed after 60 min. This response was used for a critical test of the functional involvement of auxin in tropic curvature. It was found that phototropic (first phototropic curvature) as well as gravitropic bending are correlated with a change of MT orientation from transverse to longitudinal at the slowergrowing organ flank whereas the transverse MT orientation is maintained (or even augmented) at the faster-growing organ flank. These directional changes are confined to the MT subjacent to the outer epidermal wall. The same basic results were obtained with sunflower hypocotyls subjected to phototropic or gravitropic stimulation. It is concluded that auxin is, in fact, involved in asymmetric growth leading to tropic curvature. However, our results do not allow us to discriminate between an uneven distribution of endogenous auxin or an even distribution of auxin, the activity of which is modulated by an unevenly distributed inhibitor of auxin action.


Planta | 2002

The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola.

Beate Kiefer; Michael Riemann; Claudia Büche; Hanns-Heinz Kassemeyer; Peter Nick

Abstract. The oomycete grape downy mildew (Plasmopara viticola Berk. & Curt. Ex de Bary) is a serious pathogen of grapevine and spreads by extremely efficient cycles of asexual propagation. The high efficiency must involve efficient sensing of the host. We therefore analyzed the time course and morphology of the early development of this pathogen in a host system, by infection of leaf discs of grapevine (Vitis vinifera L. cv. Müller-Thurgau), and in a host-free system. Host factors were demonstrated to influence pathogen development in the following ways: (i) the release of zoospores from mature sporangia was accelerated, (ii) the morphogenesis of the germ tube was coordinated, and (iii) the zoospores were targeted to the stomata by factors that depended on stomata closure. The findings show that the early development of P. viticola is regulated, specifically and coordinately, by factors originating from the host plant.


Plant Physiology | 2007

Actin Is Involved in Auxin-Dependent Patterning

Jan Maisch; Peter Nick

Polar transport of auxin has been identified as a central element of pattern formation. The polarity of auxin transport is linked to the cycling of pin-formed proteins, a process that is related to actomyosin-dependent vesicle traffic. To get insight into the role of actin for auxin transport, we used patterned cell division to monitor the polarity of auxin fluxes. We show that cell division in the tobacco (Nicotiana tabacum L. cv Bright-Yellow 2) cell line is partially synchronized and that this synchrony can be perturbed by inhibition of auxin transport by 1-N-naphthylphthalamic acid. To address the role of actin in this synchrony, we induced a bundled configuration of actin by overexpressing mouse talin. The bundling of actin impairs the synchrony of cell division and increases the sensitivity to 1-N-naphthylphthalamic acid. Addition of the polarly transported auxins indole-3-acetic acid and 1-naphthyl acetic acid (but not 2,4-dichlorophenoxyacetic acid) restored both the normal organization of actin and the synchrony of cell division. This study suggests that auxin controls its own transport by changing the state of actin filaments.


Journal of Experimental Botany | 2014

Life and death under salt stress: same players, different timing?

Ahmed Ismail; Shin Takeda; Peter Nick

Salinity does not only stress plants but also challenges human life and the economy by posing severe constraints upon agriculture. To understand salt adaptation strategies of plants, it is central to extend agricultural production to salt-affected soils. Despite high impact and intensive research, it has been difficult to dissect the plant responses to salt stress and to define the decisive key factors for the outcome of salinity signalling. To connect the rapidly accumulating data from different systems, treatments, and organization levels (whole-plant, cellular, and molecular), and to identify the appropriate correlations among them, a clear conceptual framework is required. Similar to other stress responses, the molecular nature of the signals evoked after the onset of salt stress seems to be general, as with that observed in response to many other stimuli, and should not be considered to confer specificity per se. The focus of the current review is therefore on the temporal patterns of signals conveyed by molecules such as Ca(2+), H(+), reactive oxygen species, abscisic acid, and jasmonate. We propose that the outcome of the salinity response (adaptation versus cell death) depends on the timing with which these signals appear and disappear. In this context, the often-neglected non-selective cation channels are relevant. We also propose that constraining a given signal is as important as its induction, as it is the temporal competence of signalling (signal on demand) that confers specificity.


Protoplasma | 1998

THE AUXIN RESPONSE OF ACTIN IS ALTERED IN THE RICE MUTANT YIN-YANG

Q. Y. Wang; Peter Nick

SummaryThe rice mutantYin-Yang has been selected during a screen for resistance to cytoskeletal drugs and is characterized by alterations in epidermal cell length and a precocious onset of gravitropism. The elongation response of coleoptile segments to auxin does not reveal changes of auxin sensitivity inYin-Yang. However, in contrast to the wild type, cell elongation inYin-Yang is highly sensitive to the actin-polymerisation blocker cytochalasin D. This increased sensitivity to cytochalasin D requires optimal concentrations of auxin to become manifest. The auxin response of actin microfilaments in epidermal cells differs between wild type and mutant. In the wild type, the longitudinal microfilament bundles become loosened in response to auxin. In the mutant, these bundles disintegrate partially and are replaced by a network of short filaments surrounding the nucleus. Several aspects of the mutant phenotype can be mimicked in the wild type by treatment with cytochalasin D. The mutant phenotype is discussed in terms of signal-dependent changes of actin dynamics and the putative role of actin during cell elongation.


Frontiers in Plant Science | 2015

Exploring Jasmonates in the Hormonal Network of Drought and Salinity Responses

Michael Riemann; Rohit Dhakarey; Mohamed Hazman; Berta Miro; Ajay Kohli; Peter Nick

Present and future food security is a critical issue compounded by the consequences of climate change on agriculture. Stress perception and signal transduction in plants causes changes in gene or protein expression which lead to metabolic and physiological responses. Phytohormones play a central role in the integration of different upstream signals into different adaptive outputs such as changes in the activity of ion-channels, protein modifications, protein degradation, and gene expression. Phytohormone biosynthesis and signaling, and recently also phytohormone crosstalk have been investigated intensively, but the function of jasmonates under abiotic stress is still only partially understood. Although most aspects of jasmonate biosynthesis, crosstalk and signal transduction appear to be similar for biotic and abiotic stress, novel aspects have emerged that seem to be unique for the abiotic stress response. Here, we review the knowledge on the role of jasmonates under drought and salinity. The crosstalk of jasmonate biosynthesis and signal transduction pathways with those of abscisic acid (ABA) is particularly taken into account due to the well-established, central role of ABA under abiotic stress. Likewise, the accumulating evidence of crosstalk of jasmonate signaling with other phytohormones is considered as important element of an integrated phytohormonal response. Finally, protein post-translational modification, which can also occur without de novo transcription, is treated with respect to its implications for phytohormone biosynthesis, signaling and crosstalk. To breed climate-resilient crop varieties, integrated understanding of the molecular processes is required to modulate and tailor particular nodes of the network to positively affect stress tolerance.


Protoplasma | 2002

A role for actin-driven secretion in auxin-induced growth

Frank Waller; Michael Riemann; Peter Nick

Summary. In epidermal cells of Zea mays coleoptiles, actin microfilaments are organized in fine strands during cell elongation, but are bundled in response to signals that inhibit growth. This bundling response is accompanied by an increased membrane association of extracted actin. Brefeldin A, an inhibitor of vesicle secretion, increases the membrane association of actin, causes a bundling of cortical actin microfilaments, and reduces the sensitivity of cell elongation to auxin. A model is proposed where auxin controls the dynamics of an actin subpopulation that guides vesicles loaded with components of the auxin-signaling machinery towards the cell poles.


Journal of Experimental Botany | 2010

The cytoskeleton enhances gene expression in the response to the Harpin elicitor in grapevine

Fei Qiao; Xiaoli Chang; Peter Nick

The cytoskeleton undergoes dramatic reorganization during plant defence. This response is generally interpreted as part of the cellular repolarization establishing physical barriers against the invading pathogen. To gain insight into the functional significance of cytoskeletal responses for defence, two Vitis cell cultures that differ in their microtubular dynamics were used, and the cytoskeletal response to the elicitor Harpin in parallel to alkalinization of the medium as a fast response, and the activation of defence-related genes were followed. In one cell line derived from the grapevine cultivar ‘Pinot Noir’, microtubules contained mostly tyrosinylated α-tubulin, indicating high microtubular turnover, whereas in another cell line derived from the wild grapevine V. rupestris, the α-tubulin was strongly detyrosinated, indicating low microtubular turnover. The cortical microtubules were disrupted and actin filaments were bundled in both cell lines, but the responses were elevated in V. rupestris as compared with V. vinifera cv. ‘Pinot Noir’. The cytoskeletal responsiveness correlated with elicitor-induced alkalinization and the expression of defence genes. Using resveratrol synthase and stilbene synthase as examples, it could be shown that pharmacological manipulation of microtubules could induce gene expression in the absence of elicitor. These findings are discussed with respect to a role for microtubules as positive regulators of defence-induced gene expression.


Protoplasma | 1997

Response of actin microfilaments during phytochrome-controlled growth of maize seedlings

Frank Waller; Peter Nick

SummaryIn seedlings of maize (Zea mays L. cv. Percival), growth is controlled by the plant photoreceptor phytochrome. Whereas coleoptile growth is promoted by continuous far-red light, a dramatic block of mesocotyl elongation is observed. The response of the coleoptile is based entirely upon light-induced stimulation of cell elongation, whereas the response of the mesocotyl involves light-induced inhibition of cell elongation. The light response of actin microfilaments was followed over time in the epidermis by staining with fluorescence-labelled phalloidin. In contrast to the underlying tissue, epidermal cells are characterized by dense longitudinal bundles of microfilaments. These bundles become loosened during phases of rapid elongation (between 2–3 days in irradiated coleoptiles, between 5–6 days in dark-grown coleoptiles). The condensed bundles re-form when growth gradually ceases. The response of actin to light is fast. If etiolated mesocotyls are transferred to far-red light, condensation of microfilaments can be clearly seen 1 h after the onset of stimulation together with an almost complete block of mesocotyl elongation. The observations are discussed in relation to a possible role of actin microfilaments in the signal-dependent control of cell elongation.


American Journal of Botany | 2010

Molecular phylogeny of the genus Vitis (Vitaceae) based on plastid markers.

Dorothee Tröndle; Stephan Schröder; Hanns-Heinz Kassemeyer; Christiane Kiefer; Marcus A. Koch; Peter Nick

UNLABELLED PREMISE OF THE STUDY This work represents the first molecular phylogeny of the economically important genus Vitis, an important genetic resource for breeding in grapevine, Vitis vinifera. • METHODS A molecular phylogeny of Vitis using a combined data set of three noncoding regions of the plastid DNA genome was constructed from 47 accessions covering 30 species of Vitis. The data for the trnL-F marker were combined with previously published data across the Vitaceae. • KEY RESULTS The molecular phylogeny demonstrated monophyly of the genus Vitis. Based on the combined analysis of three genes, Vitis is split into three clades that mirror the continental distribution of these accessions. The diversity is highest in the Asian clade, but the general genetic distances across taxa from different continents are relatively small. • CONCLUSIONS The findings support a relatively recent and intense gene flow between East Asia and North America and the possible impact of hybridization on the evolution of the genus Vitis. Taxon identity in important stock collections should be screened carefully because roughly 10% of the accessions analyzed in the present study had been misidentified.

Collaboration


Dive into the Peter Nick's collaboration.

Top Co-Authors

Avatar

Michael Riemann

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jan Maisch

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Eggenberger

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mohamed Hazman

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Steffen Durst

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Heuing

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge