Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Nordlander is active.

Publication


Featured researches published by Peter Nordlander.


Nature Materials | 2010

The Fano resonance in plasmonic nanostructures and metamaterials

Boris Luk'yanchuk; N.I. Zheludev; Stefan A. Maier; Naomi J. Halas; Peter Nordlander; Harald Giessen; Chong Tow Chong

Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.


Science | 1995

Unraveling Nanotubes: Field Emission from an Atomic Wire

Andrew G. Rinzler; Jason H. Hafner; Pavel Nikolaev; Peter Nordlander; Daniel T. Colbert; Richard E. Smalley; L. Lou; Seong Gon Kim; David Tománek

Field emission of electrons from individually mounted carbon nanotubes has been found to be dramatically enhanced when the nanotube tips are opened by laser evaporation or oxidative etching. Emission currents of 0.1 to 1 microampere were readily obtained at room temperature with bias voltages of less than 80 volts. The emitting structures are concluded to be linear chains of carbon atoms, Cn, (n = 10 to 100), pulled out from the open edges of the graphene wall layers of the nanotube by the force of the electric field, in a process that resembles unraveling the sleeve of a sweater.


Science | 2011

Photodetection with Active Optical Antennas

Mark W. Knight; Heidar Sobhani; Peter Nordlander; Naomi J. Halas

An active optical antenna-diode combines the functions of light-harvesting and excited-electron injection. Nanoantennas are key optical components for light harvesting; photodiodes convert light into a current of electrons for photodetection. We show that these two distinct, independent functions can be combined into the same structure. Photons coupled into a metallic nanoantenna excite resonant plasmons, which decay into energetic, “hot” electrons injected over a potential barrier at the nanoantenna-semiconductor interface, resulting in a photocurrent. This dual-function structure is a highly compact, wavelength-resonant, and polarization-specific light detector, with a spectral response extending to energies well below the semiconductor band edge.


Science | 2010

Self-Assembled Plasmonic Nanoparticle Clusters

Jonathan A. Fan; Chihhui Wu; Kui Bao; Jiming Bao; Rizia Bardhan; Naomi J. Halas; Vinothan N. Manoharan; Peter Nordlander; Gennady Shvets; Federico Capasso

Optical Nanoengineering Optics and electronics operate at very different length scales. Surface plasmons are light-induced electronic excitations that are being pursued as a route to bridge the length scales and bring the processing speed offered by optical communication down to the size scales of electronic chip circuitry. Now, Fan et al. (p. 1135) describe the self-assembly of nanoscale dielectric particles coated with gold. Functionalization of the gold surface with polymer ligands allowed controlled production of clusters of nanoparticles. The optical properties of the self-assembled nanostructures depended on the number of components within the cluster and each structure could be selected for its unique optical properties. Such a bottom-up approach should help in fabricating designed optical circuits on the nanoscale. A hierarchy of nanoscale optical structures is created from nanoparticles that have metal shells and dielectric cores. The self-assembly of colloids is an alternative to top-down processing that enables the fabrication of nanostructures. We show that self-assembled clusters of metal-dielectric spheres are the basis for nanophotonic structures. By tailoring the number and position of spheres in close-packed clusters, plasmon modes exhibiting strong magnetic and Fano-like resonances emerge. The use of identical spheres simplifies cluster assembly and facilitates the fabrication of highly symmetric structures. Dielectric spacers are used to tailor the interparticle spacing in these clusters to be approximately 2 nanometers. These types of chemically synthesized nanoparticle clusters can be generalized to other two- and three-dimensional structures and can serve as building blocks for new metamaterials.


Nature Nanotechnology | 2015

Plasmon-induced hot carrier science and technology

Mark L. Brongersma; Naomi J. Halas; Peter Nordlander

The discovery of the photoelectric effect by Heinrich Hertz in 1887 set the foundation for over 125 years of hot carrier science and technology. In the early 1900s it played a critical role in the development of quantum mechanics, but even today the unique properties of these energetic, hot carriers offer new and exciting opportunities for fundamental research and applications. Measurement of the kinetic energy and momentum of photoejected hot electrons can provide valuable information on the electronic structure of materials. The heat generated by hot carriers can be harvested to drive a wide range of physical and chemical processes. Their kinetic energy can be used to harvest solar energy or create sensitive photodetectors and spectrometers. Photoejected charges can also be used to electrically dope two-dimensional materials. Plasmon excitations in metallic nanostructures can be engineered to enhance and provide valuable control over the emission of hot carriers. This Review discusses recent advances in the understanding and application of plasmon-induced hot carrier generation and highlights some of the exciting new directions for the field.


Nano Letters | 2008

Symmetry Breaking in Plasmonic Nanocavities : Subradiant LSPR Sensing and a Tunable Fano Resonance

Feng Hao; Yannick Sonnefraud; Pol Van Dorpe; Stefan A. Maier; Naomi J. Halas; Peter Nordlander

A metallic nanostructure consisting of a disk inside a thin ring supports superradiant and very narrow subradiant modes. Symmetry breaking in this structure enables a coupling between plasmon modes of differing multipolar order, resulting in a tunable Fano resonance. The LSPR sensitivities of the subradiant and Fano resonances are predicted to be among the largest yet for individual nanostructures.


Nano Letters | 2013

Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au

Shaunak Mukherjee; Florian Libisch; Nicolas Large; Oara Neumann; Lisa V. Brown; Jin Cheng; J. Britt Lassiter; Emily A. Carter; Peter Nordlander; Naomi J. Halas

Heterogeneous catalysis is of paramount importance in chemistry and energy applications. Catalysts that couple light energy into chemical reactions in a directed, orbital-specific manner would greatly reduce the energy input requirements of chemical transformations, revolutionizing catalysis-driven chemistry. Here we report the room temperature dissociation of H(2) on gold nanoparticles using visible light. Surface plasmons excited in the Au nanoparticle decay into hot electrons with energies between the vacuum level and the work function of the metal. In this transient state, hot electrons can transfer into a Feshbach resonance of an H(2) molecule adsorbed on the Au nanoparticle surface, triggering dissociation. We probe this process by detecting the formation of HD molecules from the dissociations of H(2) and D(2) and investigate the effect of Au nanoparticle size and wavelength of incident light on the rate of HD formation. This work opens a new pathway for controlling chemical reactions on metallic catalysts.


ACS Nano | 2008

Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.

Fei Le; Daniel W. Brandl; Yaroslav A. Urzhumov; Hui Wang; Janardan Kundu; Naomi J. Halas; Javier Aizpurua; Peter Nordlander

Nanoshell arrays have recently been found to possess ideal properties as a substrate for combining surface enhanced raman scattering (SERS) and surface enhanced infrared absorption (SEIRA) spectroscopies, with large field enhancements at the same spatial locations on the structure. For small interparticle distances, the multipolar plasmon resonances of individual nanoshells hybridize and form red-shifted bands, a relatively narrow band in the near-infrared (NIR) originating from quadrupolar nanoshell resonances enhancing SERS, and a very broadband in the mid-infrared (MIR) arising from dipolar resonances enhancing SEIRA. The large field enhancements in the MIR and at longer wavelengths are due to the lightning-rod effect and are well described with an electrostatic model.


Nature Communications | 2012

Bridging quantum and classical plasmonics with a quantum-corrected model

Ruben Esteban; Andrei G. Borisov; Peter Nordlander; Javier Aizpurua

Electromagnetic coupling between plasmonic resonances in metallic nanoparticles allows for engineering of the optical response and generation of strong localized near-fields. Classical electrodynamics fails to describe this coupling across sub-nanometer gaps, where quantum effects become important owing to non-local screening and the spill-out of electrons. However, full quantum simulations are not presently feasible for realistically sized systems. Here we present a novel approach, the quantum-corrected model (QCM), that incorporates quantum-mechanical effects within a classical electrodynamic framework. The QCM approach models the junction between adjacent nanoparticles by means of a local dielectric response that includes electron tunnelling and tunnelling resistivity at the gap and can be integrated within a classical electrodynamical description of large and complex structures. The QCM predicts optical properties in excellent agreement with fully quantum mechanical calculations for small interacting systems, opening a new venue for addressing quantum effects in realistic plasmonic systems.


Nano Letters | 2009

Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer

Jorge Zuloaga; Emil Prodan; Peter Nordlander

Using time-dependent density functional theory, we present a fully quantum mechanical investigation of the plasmon resonances in a nanoparticle dimer as a function of interparticle separation. We show that for dimer separations below 1 nm quantum mechanical effects, such as electron tunneling across the dimer junction and screening, significantly modify the optical response and drastically reduce the electromagnetic field enhancements relative to classical predictions. For larger separations, the dimer plasmons are well described by classical electromagnetic theory.

Collaboration


Dive into the Peter Nordlander's collaboration.

Researchain Logo
Decentralizing Knowledge