Peter Ossieur
Tyndall National Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Ossieur.
IEEE Communications Magazine | 2014
Marco Ruffini; Lena Wosinska; Mohand Achouche; Jiajia Chen; Nick Doran; Farsheed Farjady; Julio Montalvo; Peter Ossieur; Barry O'Sullivan; Nick Parsons; Thomas Pfeiffer; Xing-Zhi Qiu; Christian Raack; Harald Rohde; Marco Schiano; Paul D. Townsend; Roland Wessäly; Xin Yin; David B. Payne
Fiber to the premises has promised to increase the capacity in telecommunications access networks for well over 30 years. While it is widely recognized that optical-fiber-based access networks will be a necessity in the short to medium-term future, its large upfront cost and regulatory issues are pushing many operators to further postpone its deployment, while installing intermediate unambitious solutions such as fiber to the cabinet. Such high investment cost of both network access and core capacity upgrade often derives from poor planning strategies that do not consider the necessity to adequately modify the network architecture to fully exploit the cost benefit that a fiber-centric solution can bring. DISCUS is a European Framework 7 Integrated Project that, building on optical-centric solutions such as long-reach passive optical access and flat optical core, aims to deliver a cost-effective architecture for ubiquitous broadband services. DISCUS analyzes, designs, and demonstrates end-to-end architectures and technologies capable of saving cost and energy by reducing the number of electronic terminations in the network and sharing the deployment costs among a larger number of users compared to current fiber access systems. This article describes the network architecture and the supporting technologies behind DISCUS, giving an overview of the concepts and methodologies that will be used to deliver our end-to-end network solution.
Journal of Lightwave Technology | 2011
Peter Ossieur; Cleitus Antony; Aisling M. Clarke; Alan Naughton; H Krimmel; Y. Chang; C. Ford; Anna Borghesani; D.G. Moodie; A. Poustie; Richard Wyatt; Bob Harmon; I. Lealman; Graeme Maxwell; D. Rogers; David W. Smith; Derek Nesset; Russell Davey; Paul D. Townsend
We present a hybrid dense wavelength-division-multiplexed time-division multiple access passive optical network (DWDM-TDMA PON) with record performance in terms of reach (135.1 km of which 124 km were field-installed fibers), number of supported optical network units (ONUs-8192) and capacity (symmetric 320 Gb/s). This was done using 32-, 50-GHz-spaced downstream wavelengths and another 32-, 50-GHz-spaced upstream wavelengths, each carrying 10 Gb/s traffic (256 ONUs per wavelength, upstream operated in burst mode). The 10 Gb/s downstream channels were based upon DFB lasers (arranged in a DWDM grid), whose outputs were modulated using a electro-absorption modulator (EAM). The downstream channels were terminated using avalanche photodiodes in the optical networks units (ONUs). Erbium-doped fiber amplifiers (EDFAs) provided the gain to overcome the large fiber and splitting losses. The 10 Gb/s upstream channels were based upon seed carriers (arranged in a DWDM grid) distributed from the service node towards the optical network units (ONUs) located in the users premises. The ONUs boosted, modulated, and reflected these seed carriers back toward the service node using integrated 10 Gb/s reflective EAM-SOAs (EAM-semiconductor optical amplifier). This seed carrier distribution scheme offers the advantage that all wavelength referencing is done in the well-controlled environment of the service node. The bursty upstream channels were further supported by gain stabilized EDFAs and a 3R 10 Gb/s burst-mode receiver with electronic dispersion compensation. The demonstrated network concept allows integration of metro and optical access networks into a single all-optical system, which has potential for capital and operational expenditure savings for operators.
Journal of Lightwave Technology | 2004
Xing-Zhi Qiu; Peter Ossieur; Johan Bauwelinck; Yanchun Yi; Dieter Verhulst; Jan Vandewege; B. De Vos; P. Solina
This paper presents three new gigabit-capable passive optical network (GPON) physical-media-dependent (PMD) prototypes: a burst-mode optical transmitter, an avalanche photodiode/transimpedance amplifier (APD-TIA), and a burst-mode optical receiver. With these, point-to-multipoint (P2MP) upstream transmission can be realized in a high-performance GPON at 1.25 Gb/s. Performance measurements on the new burst-mode upstream PMD modules comply with GPON uplink simulations. The laser transmitter can quickly set and stabilize the launched optical power level over a wide temperature range with better than 1-dB accuracy. A burst-mode receiver sensitivity of -32.8 dBm (BER=10/sup -10/) is measured, combined with a dynamic range of 23 dB at a fixed APD avalanche gain of 6. Full compliance is achieved with the recently approved ITU-T Recommendation G.984.2 supporting an innovative overall power-leveling mechanism.
Journal of Lightwave Technology | 2011
Peter Ossieur; Cleitus Antony; Alan Naughton; Aisling M. Clarke; Heinz-Georg Krimmel; Xin Yin; Xing-Zhi Qiu; C. Ford; Anna Borghesani; D.G. Moodie; A. Poustie; Richard Wyatt; Bob Harmon; I. Lealman; Graeme Maxwell; D. Rogers; David W. Smith; Sylvia Smolorz; Harald Rohde; Derek Nesset; Russell Davey; Paul D. Townsend
We report on a hybrid DWDM-TDM A optical access network that provides a route for integrating access and metro net- works into a single all-optical system. The greatest challenge in using DWDM in optical access networks is to precisely align the wavelength of the customer transmitter (Tx) with a DWDM wave- length grid at low cost. Here, this was achieved using novel tunable, external cavity lasers in the optical network units (ONUs) at the customers end. To further support the upstream link, a 10 Gb/s burst mode receiver (BMRx) was developed and gain-stabilized erbium-doped fiber amplifiers (EDFAs) were used in the network experiments. The experimental results show that 10 Gb/s bit rates can be achieved both in the downstream and upstream (operated in burst mode) direction over a reach of 100 km. Up to 32 × 50 GHz spaced downstream wavelengths and another 32 × 50 GHz spaced upstream wavelengths can be supported. A 512 split per wave- length was achieved: the network is then capable of distributing a symmetric 320 Gb/s capacity to 16384 customers. The proposed architecture is a potential candidate for future optical access net- works. Indeed it spreads the cost of the network equipment over a very large customer base, allows for node consolidation and integration of metro and optical access networks into an all-optical system.
lasers and electro-optics society meeting | 2007
Paul D. Townsend; Giuseppe Talli; Chi-Wai Chow; E. M. MacHale; Cleitus Antony; Russell Davey; T. De Ridder; Xing-Zhi Qiu; Peter Ossieur; H. G. Krimmel; David W. Smith; I. Lealman; A. Poustie; Sebastian Randel; Harald Rohde
This paper is a tutorial reviewing research and development performed over the last few years to extend the reach of passive optical networks using technology such as optical amplifiers.
IEEE Journal of Solid-state Circuits | 2005
Peter Ossieur; Dieter Verhulst; Yves Martens; Wei Chen; Johan Bauwelinck; Xing-Zhi Qiu; Jan Vandewege
This paper presents a 1.25-Gb/s burst-mode receiver (BMRx) for upstream transmission over gigabit passive optical networks (G-PONs). The dc-coupled receiver uses a unique arrangement of three limiting amplifiers to convert the bursty input signal to a current mode logic output signal while rejecting the dc offset from a preceding transimpedance amplifier. Peak detectors extract a decision threshold from a sequence of 12 successive nonreturn-to-zero (NRZ) 1s and 12 successive NRZ 0s received at the beginning of each packet. Automatic compensation of the remaining offsets of the BMRx is performed digitally via digital-to-analog converters. The chip was designed in a 0.35-/spl mu/m SiGe BiCMOS process. The receiver contains an APD with a gain of 6 and a transimpedance amplifier and shows a sensitivity of -32.8 dBm and a dynamic range of 23.8 dB. A sensitivity penalty of 2.2 dB is incurred when a packet with average optical power of -9 dBm precedes the packet under consideration, the guard time between the packets being 25.6 ns. The BMRx includes activity detection circuitry, capable of quickly detecting average optical levels as low as -35.5 dBm. The performed measurements prove that the receiver meets the G-PON physical media dependent layer specification defined in ITU-T Recommendation G.984.2.
Journal of Lightwave Technology | 2003
Peter Ossieur; Xing-Zhi Qiu; Johan Bauwelinck; Jan Vandewege
This paper presents the sensitivity penalty for burst-mode receivers using avalanche photodiodes. The analysis takes into account detailed avalanche photodiode statistics, additive Gaussian noise, intersymbol interference and dc offsets in the receiver channel. The penalty has been calculated via comparison of bit-error rates (BERs), obtained using numerical integration, both in continuous- and burst-mode operation. Sensitivity penalties for burst-mode operation as a function of the mean avalanche gain are presented. The Gaussian approximation systematically underestimates the burst-mode penalty. It is shown that the penalty depends upon both the type of avalanche photodiode (APD) and the required BER. Optimum avalanche gains maximizing the sensitivity of the receiver are given. The influence of dc-offsets upon the sensitivity is studied. Furthermore, it is shown that the impulse response of the filters used to extract the decision threshold profoundly impacts the receiver performance. Finally, some important guidelines for the design of high sensitivity and wide dynamic range burst-mode receivers are given.
optical fiber communication conference | 2010
Cleitus Antony; Peter Ossieur; Aisling M. Clarke; Alan Naughton; Heinz-Georg Krimmel; Y. Chang; Anna Borghesani; D.G. Moodie; A. Poustie; Richard Wyatt; Bob Harmon; I. Lealman; Graeme Maxwell; D. Rogers; David William Smith; Derek Nesset; Russell Davey; Paul D. Townsend
A DWDM-TDMA PON using carrier distribution with symmetric 320 Gb/s capacity is demonstrated over 124 km field-installed fibers. The upstream channels feature a 3R 10 Gb/s burst-mode receiver with electronic dispersion compensation, burst-mode EDFAs and integrated reflective SOA-EAMs.
Journal of Lightwave Technology | 2015
Nicola Pavarelli; Jun Su Lee; Marc Rensing; Carmelo Scarcella; Shiyu Zhou; Peter Ossieur; Peter O'Brien
Fiber optic interconnection processes and hybrid integration of electronic devices for high speed Si photonic systems are presented. Thermal effects arising from these hybrid integration processes are also investigated. An overview of ePIXfab which offers affordable access to an advanced Si photonic foundry service is also presented. This includes the presentation of fundamental photonic packaging design rules which can greatly reduce the time and cost associated with the development of complex Si photonic devices.
international symposium on signals circuits and systems | 2003
Peter Ossieur; Xing-Zhi Qiu; Johan Bauwelinck; Dieter Verhulst; Yves Martens; Jan Vandewege; Brecht Stubbe
This paper gives an overview of past and recent developments of Passive Optical Networks (PONs). Such networks currently receive a lot of intention as a means to relieve the so-called last-mile bottleneck in todays broadband networks using optical fiber technology. Several important multiplexing techniques are highlighted, with an emphasis on Time Division Multiplexing (TDM). An overview of current standards is given, together with emerging standards for advanced broadband PON networks.