Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter P Swoboda is active.

Publication


Featured researches published by Peter P Swoboda.


Radiology | 2013

Relationship between Myocardial Edema and Regional Myocardial Function after Reperfused Acute Myocardial Infarction: An MR Imaging Study

Ananth Kidambi; Adam N Mather; Peter P Swoboda; Manish Motwani; Timothy A Fairbairn; John P. Greenwood; Sven Plein

PURPOSE To compare the relationship of myocardial edema and corresponding contractile function over time in patients with reperfused acute myocardial infarction (AMI). MATERIALS AND METHODS This study was approved by the regional ethics committee; all patients gave written informed consent. Thirty-nine patients (34 men; mean age, 57 years; age range, 35-73 years) underwent T2-weighted, tagging, and late gadolinium enhancement magnetic resonance imaging at three time points after primary percutaneous coronary intervention for ST-elevation AMI. Circumferential strain, T2-weighted signal intensity, and volume of infarct zones, peri-infarct zones, and remote myocardium were measured. Patients were stratified by presence or absence of peri-infarct edema, defined as areas with T2-weighted signal intensity of two or more standard deviations above that of remote myocardium. Statistical analysis was performed with repeated-measures analysis of variance with post hoc Bonferroni correction. RESULTS Edematous peri-infarct myocardium had attenuated strain compared with remote myocardium at day 2 (-0.137 vs -0.226, P < .001), day 30 (-0.188 vs -0.240, P < .01), and day 90 (-0.207 vs -0.241, P = .01). Nonedematous peri-infarct myocardium had similar (P > .05) strain to remote myocardium at all time points. Strain improved in edematous peri-infarct myocardium at day 30 (P = .02) and day 90 (P < .01), closely mirroring resolution of intensity and volume of edema. Decreased strain correlated with edema volume (r = 0.30, P = .01) and normalized edema signal intensity (r = 0.28, P < .01). In eight patients with fully transmural infarction, infarct zone strain improved between day 2 and day 90 (P = .02). CONCLUSION Improvement of strain in peri-infarct myocardium closely follows regression of myocardial edema. Volume of edema and intensity of signal on T2-weighted images relate to functional recovery after reperfused AMI.


European Journal of Echocardiography | 2014

The microvascular effects of insulin resistance and diabetes on cardiac structure, function, and perfusion: a cardiovascular magnetic resonance study

Abdulghani M Larghat; Peter P Swoboda; John D Biglands; Mark T. Kearney; John P. Greenwood; Sven Plein

Aims Type 2 diabetes mellitus is an independent risk factor for the development of heart failure. To better understand the mechanism by which this occurs, we investigated cardiac structure, function, and perfusion in patients with and without diabetes. Methods and results Sixty-five patients with no stenosis >30% on invasive coronary angiography were categorized into diabetes (19) and non-diabetes (46) which was further categorized into prediabetes (30) and controls (16) according to the American Diabetes Association guidelines. Each patient underwent comprehensive cardiovascular magnetic resonance assessment. Left-ventricular (LV) mass, relative wall mass (RWM), Lagrangian circumferential strain, LV torsion, and myocardial perfusion reserve (MPR) were calculated. LV mass was higher in diabetics than non-diabetics (112.8 ± 39.7 vs. 91.5 ± 21.3 g, P = 0.01) and in diabetics than prediabetics (112.8 ± 39.7 vs. 90.3 ± 18.7 g, P = 0.02). LV torsion angle was higher in diabetics than non-diabetics (9.65 ± 1.90 vs. 8.59 ± 1.91°, P = 0.047), and MPR was lower in diabetics than non-diabetics (2.10 ± 0.76 vs. 2.84 ± 1.25 mL/g/min, P = 0.01). There was significant correlation between MPR and early diastolic strain rate (r = −0.310, P = 0.01) and LV torsion (r = −0.306, P = 0.01). In multivariable linear regression analysis, non-diabetics waist–hip ratio, but not body mass index, had a significant association with RWM (Beta = 0.34, P = 0.02). Conclusion Patients with diabetes have increased LV mass, LV torsion, and decreased MPR. There is a significant association between decreased MPR and increased LV torsion suggesting a possible mechanistic link between microvascular disease and cardiac dysfunction in diabetes.


Circulation-cardiovascular Imaging | 2016

Athletic Cardiac Adaptation in Males Is a Consequence of Elevated Myocyte Mass

Adam K McDiarmid; Peter P Swoboda; Bara Erhayiem; Rosalind E. Lancaster; Gemma K. Lyall; David A. Broadbent; Laura E Dobson; Tarique A Musa; David P Ripley; Pankaj Garg; John P. Greenwood; Carrie Ferguson; Sven Plein

Background—Cardiac remodeling occurs in response to regular athletic training, and the degree of remodeling is associated with fitness. Understanding the myocardial structural changes in athlete’s heart is important to develop tools that differentiate athletic from cardiomyopathic change. We hypothesized that athletic left ventricular hypertrophy is a consequence of increased myocardial cellular rather than extracellular mass as measured by cardiovascular magnetic resonance. Methods and Results—Forty-five males (30 athletes and 15 sedentary age-matched healthy controls) underwent comprehensive cardiovascular magnetic resonance studies, including native and postcontrast T1 mapping for extracellular volume calculation. In addition, the 30 athletes performed a maximal exercise test to assess aerobic capacity and anaerobic threshold. Participants were grouped by athleticism: untrained, low performance, and high performance (O2max <60 or>60 mL/kg per min, respectively). In athletes, indexed cellular mass was greater in high- than low-performance athletes 60.7±7.5 versus 48.6±6.3 g/m2; P<0.001), whereas extracellular mass was constant (16.3±2.2 versus 15.3±2.2 g/m2; P=0.20). Indexed left ventricular end-diastolic volume and mass correlated with O2max (r=0.45, P=0.01; r=0.55, P=0.002) and differed significantly by group (P=0.01; P<0.001, respectively). Extracellular volume had an inverse correlation with O2max (r=−0.53, P=0.003 and left ventricular mass index (r=-0.44, P=0.02). Conclusions—Increasing left ventricular mass in athlete’s heart occurs because of an expansion of the cellular compartment while the extracellular volume becomes relatively smaller: a difference which becomes more marked as left ventricular mass increases. Athletic remodeling, both on a macroscopic and cellular level, is associated with the degree of an individual’s fitness. Cardiovascular magnetic resonance ECV quantification may have a future role in differentiating athlete’s heart from change secondary to cardiomyopathy.


Journal of Magnetic Resonance Imaging | 2014

Reproducibility of myocardial strain and left ventricular twist measured using complementary spatial modulation of magnetization

Peter P Swoboda; Abdulghani M Larghat; Arshad Zaman; Timothy A Fairbairn; Manish Motwani; John P. Greenwood; Sven Plein

To establish the reproducibility of complementary spatial modulation of magnetization (CSPAMM) tagged cardiovascular MR (CMR) data in normal volunteers.


Journal of Cardiovascular Magnetic Resonance | 2014

Susceptibility-weighted cardiovascular magnetic resonance in comparison to T2 and T2 star imaging for detection of intramyocardial hemorrhage following acute myocardial infarction at 3 Tesla

Ananth Kidambi; John D Biglands; David M. Higgins; David P Ripley; Arshad Zaman; David A. Broadbent; Adam K McDiarmid; Peter P Swoboda; Tarique A Musa; Bara Erhayiem; John P. Greenwood; Sven Plein

BackgroundIntramyocardial hemorrhage (IMH) identified by cardiovascular magnetic resonance (CMR) is an established prognostic marker following acute myocardial infarction (AMI). Detection of IMH by T2-weighted or T2 star CMR can be limited by long breath hold times and sensitivity to artefacts, especially at 3T. We compared the image quality and diagnostic ability of susceptibility-weighted magnetic resonance imaging (SW MRI) with T2-weighted and T2 star CMR to detect IMH at 3T.MethodsForty-nine patients (42 males; mean age 58 years, range 35-76) underwent 3T cardiovascular magnetic resonance (CMR) 2 days following re-perfused AMI. T2-weighted, T2 star and SW MRI images were obtained. Signal and contrast measurements were compared between the three methods and diagnostic accuracy of SW MRI was assessed against T2w images by 2 independent, blinded observers. Image quality was rated on a 4-point scale from 1 (unusable) to 4 (excellent).ResultsOf 49 patients, IMH was detected in 20 (41%) by SW MRI, 21 (43%) by T2-weighted and 17 (34%) by T2 star imaging (p =ns). Compared to T2-weighted imaging, SW MRI had sensitivity of 93% and specificity of 86%. SW MRI had similar inter-observer reliability to T2-weighted imaging (κ =0.90 and κ =0.88 respectively); both had higher reliability than T2 star (κ =0.53). Breath hold times were shorter for SW MRI (4 seconds vs. 16 seconds) with improved image quality rating (3.8 ± 0.4, 3.3 ± 1.0, 2.8 ± 1.1 respectively; p < 0.01).ConclusionsSW MRI is an accurate and reproducible way to detect IMH at 3T. The technique offers considerably shorter breath hold times than T2-weighted and T2 star imaging, and higher image quality scores.


American Heart Journal | 2016

Sex-related differences in left ventricular remodeling in severe aortic stenosis and reverse remodeling after aortic valve replacement: A cardiovascular magnetic resonance study.

Laura E Dobson; Timothy A Fairbairn; Tarique A Musa; Akhlaque Uddin; Cheryl A. Mundie; Peter P Swoboda; David P Ripley; Adam K McDiarmid; Bara Erhayiem; Pankaj Garg; Christopher J Malkin; Daniel J. Blackman; Linda Sharples; Sven Plein; John P. Greenwood

BACKGROUND Cardiac adaptation to aortic stenosis (AS) appears to differ according to sex, but reverse remodeling after aortic valve replacement has not been extensively described. The aim of the study was to determine using cardiac magnetic resonance imaging whether any sex-related differences exist in AS in terms of left ventricular (LV) remodeling, myocardial fibrosis, and reverse remodeling after valve replacement. METHODS One hundred patients (men, n = 60) with severe AS undergoing either transcatheter or surgical aortic valve replacement underwent cardiac magnetic resonance scans at baseline and 6 months after valve replacement. RESULTS Despite similar baseline comorbidity and severity of AS, women had a lower indexed LV mass than did men (65.3 ± 18.4 vs 81.5 ± 21.3 g/m(2), P < .001) and a smaller indexed LV end-diastolic volume (87.3 ± 17.5 vs 101.2 ± 28.6 mL/m(2), P = .002) with a similar LV ejection fraction (58.6% ± 10.2% vs 54.8% ± 12.9%, P = .178). Total myocardial fibrosis mass was similar between sexes (2.3 ± 4.1 vs 1.3 ± 1.1 g, P = .714), albeit with a differing distribution according to sex. After aortic valve replacement, men had more absolute LV mass regression than did women (18.3 ± 10.6 vs 12.7 ± 8.8 g/m(2), P = .007). When expressed as a percentage reduction of baseline indexed LV mass, mass regression was similar between the sexes (men 21.7% ± 10.1% vs women 18.4% ± 11.0%, P = .121). There was no sex-related difference in postprocedural LV ejection fraction or aortic regurgitation. Sex was not found to be a predictor of LV reverse remodeling on multiple regression analysis. CONCLUSIONS There are significant differences in the way that male and female hearts adapt to AS. Six months after aortic valve replacement, there are no sex-related differences in reverse remodeling, but superior reverse remodeling in men as a result of their more adverse remodeling profile at baseline.


Journal of Cardiovascular Magnetic Resonance | 2015

Single bolus versus split dose gadolinium administration in extra-cellular volume calculation at 3 Tesla

Adam K McDiarmid; Peter P Swoboda; Bara Erhayiem; David P Ripley; Ananth Kidambi; David A. Broadbent; David M. Higgins; John P. Greenwood; Sven Plein

BackgroundDiffuse myocardial fibrosis may be quantified with cardiovascular magnetic resonance (CMR) by calculating extra-cellular volume (ECV) from native and post-contrast T1 values. Accurate ECV calculation is dependent upon the contrast agent having reached equilibrium within tissue compartments. Previous studies have used infusion or single bolus injections of contrast to calculate ECV. In clinical practice however, split dose contrast injection is commonly used as part of stress/rest perfusion studies. In this study we sought to assess the effects of split dose versus single bolus contrast administration on ECV calculation.MethodsTen healthy volunteers and five patients ( 4 ischaemic heart disease, 1 hypertrophic cardiomyopathy) were studied on a 3.0 Tesla (Philips Achieva TX) MR system and underwent two (patients) or three (volunteers) separate CMR studies over a mean of 12 and 30 days respectively. Volunteers underwent one single bolus contrast study (Gadovist 0.15mmol/kg). In two further studies, contrast was given in two boluses (0.075mmol/kg per bolus) as part of a clinical adenosine stress/rest perfusion protocol, boluses were separated by 12 minutes. Patients underwent one bolus and one stress perfusion study only. T1 maps were acquired pre contrast and 15 minutes following the single bolus or second contrast injection.ResultsECV agreed between bolus and split dose contrast administration (coefficient of variability 5.04%, bias 0.009, 95% CI −3.754 to 3.772, r2 = 0.973, p = 0.001)). Inter-study agreement with split dose administration was good (coefficient of variability, 5.67%, bias −0.018, 95% CI −4.045 to 4.009, r2 = 0.766, p > 0.001).ConclusionECV quantification using split dose contrast administration is reproducible and agrees well with previously validated methods in healthy volunteers, as well as abnormal and remote myocardium in patients. This suggests that clinical perfusion CMR studies may incorporate assessment of tissue composition by ECV based on T1 mapping.


Jacc-cardiovascular Imaging | 2017

Myocardial Extracellular Volume Estimation by CMR Predicts Functional Recovery Following Acute MI

Ananth Kidambi; Manish Motwani; Akhlaque Uddin; David P Ripley; Adam K McDiarmid; Peter P Swoboda; David A. Broadbent; Tarique A Musa; Bara Erhayiem; Joshua Leader; Pierre Croisille; Patrick Clarysse; John P. Greenwood; Sven Plein

Objectives In the setting of reperfused acute myocardial infarction (AMI), the authors sought to compare prediction of contractile recovery by infarct extracellular volume (ECV), as measured by T1-mapping cardiac magnetic resonance (CMR), with late gadolinium enhancement (LGE) transmural extent. Background The transmural extent of myocardial infarction as assessed by LGE CMR is a strong predictor of functional recovery, but accuracy of the technique may be reduced in AMI. ECV mapping by CMR can provide a continuous measure associated with the severity of tissue damage within infarcted myocardium. Methods Thirty-nine patients underwent acute (day 2) and convalescent (3 months) CMR scans following AMI. Cine imaging, tissue tagging, T2-weighted imaging, modified Look-Locker inversion T1 mapping natively and 15 min post–gadolinium-contrast administration, and LGE imaging were performed. The ability of acute infarct ECV and acute transmural extent of LGE to predict convalescent wall motion, ejection fraction (EF), and strain were compared per-segment and per-patient. Results Per-segment, acute ECV and LGE transmural extent were associated with convalescent wall motion score (p < 0.01; p < 0.01, respectively). ECV had higher accuracy than LGE extent to predict improved wall motion (area under receiver-operating characteristics curve 0.77 vs. 0.66; p = 0.02). Infarct ECV ≤0.5 had sensitivity 81% and specificity 65% for prediction of improvement in segmental function; LGE transmural extent ≤0.5 had sensitivity 61% and specificity 71%. Per-patient, ECV and LGE correlated with convalescent wall motion score (r = 0.45; p < 0.01; r = 0.41; p = 0.02, respectively) and convalescent EF (p < 0.01; p = 0.04). ECV and LGE extent were not significantly correlated (r = 0.34; p = 0.07). In multivariable linear regression analysis, acute infarct ECV was independently associated with convalescent infarct strain and EF (p = 0.03; p = 0.04), whereas LGE was not (p = 0.29; p = 0.24). Conclusions Acute infarct ECV in reperfused AMI can complement LGE assessment as an additional predictor of regional and global LV functional recovery that is independent of transmural extent of infarction.


Circulation-cardiovascular Imaging | 2017

Acute Infarct Extracellular Volume Mapping to Quantify Myocardial Area at Risk and Chronic Infarct Size on Cardiovascular Magnetic Resonance ImagingCLINICAL PERSPECTIVE

Pankaj Garg; David A. Broadbent; Peter P Swoboda; James Rj Foley; Graham J. Fent; Tarique A Musa; David P Ripley; Bara Erhayiem; Laura E Dobson; Adam K McDiarmid; Philip Haaf; Ananth Kidambi; Rob J. van der Geest; John P. Greenwood; Sven Plein

Background— Late gadolinium enhancement (LGE) imaging overestimates acute infarct size. The main aim of this study was to investigate whether acute extracellular volume (ECV) maps can reliably quantify myocardial area at risk (AAR) and final infarct size (IS). Methods and Results— Fifty patients underwent cardiovascular magnetic resonance imaging acutely (24–72 hours) and at convalescence (3 months). The cardiovascular magnetic resonance protocol included cines, T2-weighted imaging, native T1 maps, 15-minute post-contrast T1 maps, and LGE. Optimal AAR and IS ECV thresholds were derived in a validation group of 10 cases (160 segments). Eight hundred segments (16 per patient) were analyzed to quantify AAR/IS by ECV maps (ECV thresholds for AAR is 33% and IS is 46%), T2-weighted imaging, T1 maps, and acute LGE. Follow-up LGE imaging was used as the reference standard for final IS and viability assessment. The AAR derived from ECV maps (threshold of >33) demonstrated good agreement with T2-weighted imaging–derived AAR (bias, 0.18; 95% confidence interval [CI], −1.6 to 1.3) and AAR derived from native T1 maps (bias=1; 95% CI, −0.37 to 2.4). ECV demonstrated the best linear correlation to final IS at a threshold of >46% (R=0.96; 95% CI, 0.92–0.98; P<0.0001). ECV maps demonstrated better agreement with final IS than acute IS on LGE (ECV maps: bias, 1.9; 95% CI, 0.4–3.4 versus LGE imaging: bias, 10; 95% CI, 7.7–12.4). On multiple variable regression analysis, the number of nonviable segments was independently associated with IS by ECV maps (&bgr;=0.86; P<0.0001). Conclusions— ECV maps can reliably quantify AAR and final IS in reperfused acute myocardial infarction. Acute ECV maps were superior to acute LGE in terms of agreement with final IS. IS quantified by ECV maps are independently associated with viability at follow-up.


Journal of Magnetic Resonance Imaging | 2018

Comparison of fast acquisition strategies in whole‐heart four‐dimensional flow cardiac MR: Two‐center, 1.5 Tesla, phantom and in vivo validation study

Pankaj Garg; Jos J.M. Westenberg; Pieter J. van den Boogaard; Peter P Swoboda; Rahoz Aziz; James Rj Foley; Graham J. Fent; F.G.J. Tyl; L. Coratella; Mohammed Sm ElBaz; Rob J. Der Van Geest; David M. Higgins; John P. Greenwood; Sven Plein

To validate three widely‐used acceleration methods in four‐dimensional (4D) flow cardiac MR; segmented 4D‐spoiled‐gradient‐echo (4D‐SPGR), 4D‐echo‐planar‐imaging (4D‐EPI), and 4D‐k‐t Broad‐use Linear Acquisition Speed‐up Technique (4D‐k‐t BLAST).

Collaboration


Dive into the Peter P Swoboda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge