Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Plomgaard is active.

Publication


Featured researches published by Peter Plomgaard.


Diabetologia | 2007

Brain-derived neurotrophic factor (BDNF) and type 2 diabetes

K. S. Krabbe; Anders Rinnov Nielsen; Rikke Krogh-Madsen; Peter Plomgaard; Peter Rasmussen; Christian Erikstrup; Christian P. Fischer; Birgitte Lindegaard; A. M. W. Petersen; Sarah Taudorf; Niels H. Secher; Henriette Pilegaard; Helle Bruunsgaard; Bente Klarlund Pedersen

Aims/hypothesisDecreased levels of brain-derived neurotrophic factor (BDNF) have been implicated in the pathogenesis of Alzheimer’s disease and depression. These disorders are associated with type 2 diabetes, and animal models suggest that BDNF plays a role in insulin resistance. We therefore explored whether BDNF plays a role in human glucose metabolism.Subjects and methodsWe included (Study 1) 233 humans divided into four groups depending on presence or absence of type 2 diabetes and presence or absence of obesity; and (Study 2) seven healthy volunteers who underwent both a hyperglycaemic and a hyperinsulinaemic–euglycaemic clamp.ResultsPlasma levels of BDNF in Study 1 were decreased in humans with type 2 diabetes independently of obesity. Plasma BDNF was inversely associated with fasting plasma glucose, but not with insulin. No association was found between the BDNF G196A (Val66Met) polymorphism and diabetes or obesity. In Study 2 an output of BDNF from the human brain was detected at basal conditions. This output was inhibited when blood glucose levels were elevated. In contrast, when plasma insulin was increased while maintaining normal blood glucose, the cerebral output of BDNF was not inhibited, indicating that high levels of glucose, but not insulin, inhibit the output of BDNF from the human brain.Conclusions/interpretationLow levels of BDNF accompany impaired glucose metabolism. Decreased BDNF may be a pathogenetic factor involved not only in dementia and depression, but also in type 2 diabetes, potentially explaining the clustering of these conditions in epidemiological studies.


Journal of Muscle Research and Cell Motility | 2003

Searching for the exercise factor: is IL-6 a candidate?

Bente Klarlund Pedersen; Adam Steensberg; Christian P. Fischer; Charlotte Keller; Pernille Keller; Peter Plomgaard; Mark A. Febbraio; Bengt Saltin

For years the search for the stimulus that initiates and maintains the change of excitability or sensibility of the regulating centers in exercise has been progressing. For lack of more precise knowledge, it has been called the ‘work stimulus’, ‘the work factor’ or ‘the exercise factor’. In other terms, one big challenge for muscle and exercise physiologists has been to determine how muscles signal to central and peripheral organs. Here we discuss the possibility that interleukin-6 (IL-6) could mediate some of the health beneficial effects of exercise. In resting muscle, the IL-6 gene is silent, but it is rapidly activated by contractions. The transcription rate is very fast and the fold changes of IL-6 mRNA is marked. IL-6 is released from working muscles into the circulation in high amounts. The IL-6 production is modulated by the glycogen content in muscles, and IL-6 thus works as an energy sensor. IL-6 exerts its effect on adipose tissue, inducing lipolysis and gene transcription in abdominal subcutaneous fat and increases whole body lipid oxidation. Furthermore, IL-6 inhibits low-grade TNF-α-production and may thereby inhibit TNF-α-induced insulin resistance and atherosclerosis development. We propose that IL-6 and other cytokines, which are produced and released by skeletal muscles, exerting their effects in other organs of the body, should be named ‘myokines’.


Journal of Applied Physiology | 2010

A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity

Rikke Krogh-Madsen; John P. Thyfault; Christa Broholm; Ole Hartvig Mortensen; Rasmus H. Olsen; Rémi Mounier; Peter Plomgaard; Gerrit van Hall; Frank W. Booth; Bente Klarlund Pedersen

US adults take between approximately 2,000 and approximately 12,000 steps per day, a wide range of ambulatory activity that at the low range could increase risk for developing chronic metabolic diseases. Dramatic reductions in physical activity induce insulin resistance; however, it is uncertain if and how low ambulatory activity would influence peripheral insulin sensitivity. We aimed to explore if healthy, nonexercising subjects who went from a normal to a low level of ambulatory activity for 2 wk would display metabolic alterations including reduced peripheral insulin sensitivity. To do this, ten healthy young men decreased their daily activity level from a mean of 10,501+/-808 to 1,344+/-33 steps/day for 2 wk. Hyperinsulinemic-euglycemic clamps with stable isotopes and muscle biopsies, maximal oxygen consumption (VO2 max) tests, and blood samples were performed pre- and postintervention. A reduced number of daily steps induced a significant reduction of 17% in the glucose infusion rate (GIR) during the clamp. This reduction was due to a decline in peripheral insulin sensitivity with no effect on hepatic endogenous glucose production. The insulin-stimulated ratio of pAktthr308/total Akt decreased after step reduction, with a post hoc analysis revealing the most pronounced effect after 4 h of insulin infusion. In addition, the 2-wk period induced a 7% decline in VO2 max (ml/min; cardiovascular fitness). Lean mass of legs, but not arms and trunk, decreased concurrently. Taken together, one possible biological cause for the public health problem of Type 2 diabetes has been identified. Reduced ambulatory activity for 2 wk in healthy, nonexercising young men significantly reduced peripheral insulin sensitivity, cardiovascular fitness, and lean leg mass.


Pflügers Archiv: European Journal of Physiology | 2003

Muscle-derived interleukin-6: Lipolytic, anti-inflammatory and immune regulatory effects

Bente Klarlund Pedersen; Adam Steensberg; Pernille Keller; Charlotte Keller; Christian P. Fischer; Natalie Hiscock; Gerrit van Hall; Peter Plomgaard; Mark A. Febbraio

Interleukin-6 (IL-6) is produced locally in working skeletal muscle and can account for the exercise-induced increase in plasma IL-6. The transcription rate for IL-6 in muscle nuclei isolated from muscle biopsies during exercise is very high and is enhanced further when muscle glycogen content is low. Furthermore, cultured human primary muscle cells can increase IL-6 mRNA when incubated with the calcium ionophore ionomycin and it is likely that myocytes produce IL-6 in response to muscle contraction. The biological roles of muscle-derived IL-6 have been investigated in studies in which human recombinant IL-6 was infused in healthy volunteers to mimic closely the IL-6 concentrations observed during prolonged exercise. Using stable isotopes, we have demonstrated that physiological concentrations of IL-6 induce lipolysis. Although we have yet to determine the precise biological action of muscle-derived IL-6, our data support the hypothesis that the role of IL-6 released from contracting muscle during exercise is to act in a hormone-like manner to mobilize extracellular substrates and/or augment substrate delivery during exercise. In addition, IL-6 inhibits low-level TNF-α production, and IL-6 produced during exercise probably inhibits TNF-α-induced insulin resistance in peripheral tissues. Hence, IL-6 produced by skeletal muscle during contraction may play an important role in the beneficial health effects of exercise


The Journal of Physiology | 2007

Expression of interleukin-15 in human skeletal muscle – effect of exercise and muscle fibre type composition

Anders Rinnov Nielsen; Rémi Mounier; Peter Plomgaard; Ole Hartvig Mortensen; Milena Penkowa; Tobias Speerschneider; Henriette Pilegaard; Bente Klarlund Pedersen

The cytokine interleukin‐15 (IL‐15) has been demonstrated to have anabolic effects in cell culture systems. We tested the hypothesis that IL‐15 is predominantly expressed by type 2 skeletal muscle fibres, and that resistance exercise regulates IL‐15 expression in muscle. Triceps brachii, vastus lateralis quadriceps and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers (n= 14), because these muscles are characterized by having different fibre‐type compositions. In addition, healthy, normally physically active male subjects (n= 8) not involved in any kind of resistance exercise underwent a heavy resistance exercise protocol that stimulated the vastus lateralis muscle and biopsies were obtained from this muscle pre‐exercise as well as 6, 24 and 48 h post‐exercise. IL‐15 mRNA levels were twofold higher in the triceps (type 2 fibre dominance) compared with the soleus muscle (type 1 fibre dominance), but Western blotting and immunohistochemistry revealed that muscle IL‐15 protein content did not differ between triceps brachii, quadriceps and soleus muscles. Following resistance exercise, IL‐15 mRNA levels were up‐regulated twofold at 24 h of recovery without any changes in muscle IL‐15 protein content or plasma IL‐15 at any of the investigated time points. In conclusion, IL‐15 mRNA level is enhanced in skeletal muscles dominated by type 2 fibres and resistance exercise induces increased muscular IL‐15 mRNA levels. IL‐15 mRNA levels in skeletal muscle were not paralleled by similar changes in muscular IL‐15 protein expression suggesting that muscle IL‐15 may exist in a translationally inactive pool.


The Journal of Clinical Endocrinology and Metabolism | 2008

Association between Interleukin-15 and Obesity: Interleukin-15 as a Potential Regulator of Fat Mass

Anders Rinnov Nielsen; Pernille Hojman; Christian Erikstrup; Christian P. Fischer; Peter Plomgaard; Rémi Mounier; Ole Hartvig Mortensen; Christa Broholm; Sarah Taudorf; Rikke Krogh-Madsen; Birgitte Lindegaard; A. M. W. Petersen; Julie Gehl; Bente Klarlund Pedersen

OBJECTIVE IL-15 decreases lipid deposition in preadipocytes and decreases the mass of white adipose tissue in rats, indicating that IL-15 may take part in regulating this tissue. IL-15 is expressed in human skeletal muscle and skeletal muscle may be a source of plasma IL-15 and in this way regulate adipose tissue mass. DESIGN The relation between skeletal muscle IL-15 mRNA expression, plasma IL-15, and adipose tissue mass was studied in 199 humans divided into four groups on the basis of obesity and type 2 diabetes. Furthermore, using a DNA electrotransfer model, we assessed the effect of IL-15 overexpression in skeletal muscle of mice. RESULTS In humans, multiple regression analysis showed a negative association between plasma IL-15 and total fat mass (P<0.05), trunk fat mass (P<0.01), and percent fat mass (P<0.05), independent of type 2 diabetes. Negative associations were also found between muscle IL-15 mRNA and obesity parameters. IL-15 overexpression in skeletal muscle of mice reduced trunk fat mass but not sc fat mass. CONCLUSIONS Our results indicate that IL-15 may be a regulator of trunk fat mass.


Diabetologia | 2007

Associations between insulin resistance and TNF-α in plasma, skeletal muscle and adipose tissue in humans with and without type 2 diabetes

Peter Plomgaard; Anders Rinnov Nielsen; Christian P. Fischer; Ole Hartvig Mortensen; Christa Broholm; Milena Penkowa; Rikke Krogh-Madsen; Christian Erikstrup; Birgitte Lindegaard; A. M. W. Petersen; Sarah Taudorf; Bente Klarlund Pedersen

AbstractAims/hypothesisClear evidence exists that TNF-α inhibits insulin signalling and thereby glucose uptake in myocytes and adipocytes. However, conflicting results exist with regard to the role of TNF-α in type 2 diabetes.MethodsWe obtained blood and biopsy samples from skeletal muscle and subcutaneous adipose tissue in patients with type 2 diabetes (n = 96) and healthy controls matched for age, sex and BMI (n = 103).ResultsPatients with type 2 diabetes had higher plasma levels of fasting insulin (p < 0.0001) and glucose (p < 0.0001) compared with controls, but there was no difference between groups with regard to fat mass. Plasma levels of TNF-α (p = 0.0009) and soluble TNF receptor 2 (sTNFR2; p = 0.002) were elevated in diabetic patients. Insulin sensitivity was correlated with quartiles of plasma TNF-α after adjustment for age, sex, obesity, WHR, neutrophils, IL-6 and maximum O2 uptake


Diabetes | 2008

Plasma YKL-40 - a BMI-independent marker of type 2 diabetes

Anders Rinnov Nielsen; Christian Erikstrup; Julia S. Johansen; Christian P. Fischer; Peter Plomgaard; Rikke Krogh-Madsen; Sarah Taudorf; Birgitte Lindegaard; Bente Klarlund Pedersen


The Journal of Physiology | 2005

Protein synthesis rates in human muscles: neither anatomical location nor fibre-type composition are major determinants

Bettina Mittendorfer; J. L. Andersen; Peter Plomgaard; B. Saltin; J Babraj; Kenneth Smith; Michael J. Rennie

{\left( {\ifmmode\expandafter\dot\else\expandafter\.\fi{V}O_{{\text{2}}} {\text{/kg}}} \right)}


Endocrinology | 2011

Exercise Induces a Marked Increase in Plasma Follistatin: Evidence That Follistatin Is a Contraction-Induced Hepatokine

Jakob Bondo Hansen; Claus Brandt; Anders Rinnov Nielsen; Pernille Hojman; Martin Whitham; Mark A. Febbraio; Bente Klarlund Pedersen; Peter Plomgaard

Collaboration


Dive into the Peter Plomgaard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cora Weigert

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bengt Saltin

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge