Peter Priecel
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Priecel.
Chemsuschem | 2016
Andy Maneffa; Peter Priecel; Jose Antonio Lopez-Sanchez
Methylbenzenes are among the most important organic chemicals today and, among them, p-xylene deserves particular attention because of its production volume and its application in the manufacture of polyethylene terephthalate (PET). There is great interest in producing this commodity chemical more sustainably from biomass sources, particularly driven by manufacturers willing to produce more sustainable synthetic fibres and PET bottles for beverages. A renewable source for p-xylene would allow achieving this goal with minimal disruption to existing processes for PET production. Despite the fact that recently some routes to renewable p-xylene have been identified, there is no clear consensus on their feasibility or implications. We have critically reviewed the current state-of-the-art with focus on catalytic routes and possible outlook for commercialisation. Pathways to obtain p-xylene from a biomass-derived route include methanol-to-aromatics (MTA), ethanol dehydration, ethylene dimerization, furan cycloaddition or catalytic fast pyrolysis and hydrotreating of lignin. Some of the processes identified suggest near-future possibilities, but also more speculative or longer-term sources for synthesis of p-xylene are highlighted.
Chinese Journal of Catalysis | 2016
Peter Priecel; Hammed Adekunle Salami; Romen Herrera Padilla; Ziyi Zhong; Jose Antonio Lopez-Sanchez
Despite the high amount of scientific work dedicated to the gold nanoparticles in catalysis, most of the research has been performed utilising supported nanoparticles obtained by traditional impregnation of gold salts onto a support, co-precipitation or deposition-precipitation methods which do not benefit from the recent advances in nanotechnologies. Only more recently, gold catalyst scientists have been exploiting the potential of preforming the metal nanoparticles in a colloidal suspension before immobilisation with great results in terms of catalytic activity and the morphology control of mono-and bimetallic catalysts. On the other hand, the last decade has seen the emergence of more advanced control in gold metal nanoparticle synthesis, resulting in a variety of anisotropic gold nanoparticles with easily accessible new morphologies that offer control over the coordination of surface atoms and the optical properties of the nanoparticles (tunable plasmon band) with immense relevance for catalysis. Such morphologies include nanorods, nanostars, nanoflowers, dendritic nanostructures or polyhedral nanoparticles to mention a few. In addition to highlighting newly developed methods and properties of anisotropic gold nanoparticles, in this review we examine the emerging literature that clearly indicates the often superior catalytic performance and amazing potential of these nanoparticles to transform the field of heterogeneous catalysis by gold by offering potentially higher catalytic performance, control over exposed active sites, robustness and tunability for thermal-, electro-and photocatalysis.
Carbon letters | 2013
A. F. Hassan; A. M. Youssef; Peter Priecel
Potassium hydroxide-activated carbons (CK21, CK11, and CK12) were prepared from pistachio nutshells. Physicochemical properties of activated carbons were characterized by TGA, pHpzc, Fourier transform infrared spectroscopy, scanning electron microscopy, and N2-adsorption at -196°C. The examinations showed that activated carbons have high surface area ranging between 695-1218 m2/g, total pore volume ranging between 0.527-0.772 mL/g, and a pore radius around 1.4 nm. The presence of acidic and basic surface C-O groups was confirmed. Batch adsorption experiments were carried out to study the effects of adsorbent dosage, temperature, initial concentration of adsorbate, and contact time on deltamethrin adsorption by activated carbons. The kinetic studies showed that the adsorption data followed a pseudo-second order kinetic model. The Langmuir model showed a maximum adsorption capacity of 162.6 mg/g at 35°C on CK12. Thermodynamic studies indicated that adsorption was spontaneous and increased with temperature, suggesting an endothermic process.
Chinese Journal of Catalysis | 2013
Lucie Smoláková; Šárka Botková; Libor Čapek; Peter Priecel; Agnieszka Sołtysek; Martin Kout; Lenka Matějová
Ni/Al2O3 catalysts for oxidative dehydrogenation (ODH) of ethane were prepared by impregnation of Al2O3 with nickel acetate or nickel nitrate, and by mechanical mixing of NiO and Al2O3. The Ni-based catalysts were characterized by N2 adsorption-desorption, X-ray diffraction, diffuse reflectance UV-visible diffuse reflectance spectroscopy, and temperature-programmed reduction of hydrogen. The results showed that formation of crystalline NiO particles with a size of < 8 nm and/or non-stoichiometric NiO species in the Ni/Al2O3 catalysts led to more active species in ODH of ethane under the investigated reaction conditions. In contrast, tetrahedral Ni species present in the catalysts led to higher selectivity for ethene. Formation of large crystalline NiO particles (22–32 nm) over Ni/Al2O3 catalysts decreased the selectivity for ethene.
Chemsuschem | 2016
Pedro Nothaft Romano; João Monnerat Araujo Ribeiro de Almeida; Yuri Carvalho; Peter Priecel; Eduardo Falabella Sousa-Aguiar; Jose Antonio Lopez-Sanchez
Abstract Green, inexpensive, and robust copper‐based heterogeneous catalysts achieve 100 % conversion and 99 % selectivity in the conversion of furfural to furfuryl alcohol when using cyclopentyl‐methyl ether as green solvent and microwave reactors at low H2 pressures and mild temperatures. The utilization of pressurized microwave reactors produces a 3–4 fold increase in conversion and an unexpected enhancement in selectivity as compared to the reaction carried out at the same conditions using conventional autoclave reactors. The enhancement in catalytic rate produced by microwave irradiation is temperature dependent. This work highlights that using microwave irradiation in the catalytic hydrogenation of biomass‐derived compounds is a very strong tool for biomass upgrade that offers immense potential in a large number of transformations where it could be a determining factor for commercial exploitation.
Ultrasonics Sonochemistry | 2017
Romen Herrera Padilla; Peter Priecel; Ming Lin; Jose Antonio Lopez-Sanchez; Ziyi Zhong
This work aims to develop a rapid and efficient strategy for preparing supported metal catalysts for catalytic applications. The sonication-assisted reduction-precipitation method was employed to prepare the heterogeneous mono- and bi-metallic catalysts for photocatalytic degradation of methyl orange (MO) and preferential oxidation (PROX) of CO in H2-rich gas. In general, there are three advantages for the sonication-assisted method as compared with the conventional methods, including high dispersion of metal nanoparticles on the catalyst support, the much higher deposition efficiency (DE) than those of the deposition-precipitation (DP) and co-precipitation (CP) methods, and the very fast preparation, which only lasts 10-20s for the deposition. In the AuPd/TiO2 catalysts series, the AuPd(3:1)/TiO2 catalyst is the most active for MO photocatalytic degradation; while for PROX reaction, Ru/TiO2, Au-Cu/SBA-15 and Pt/γ-Al2O3 catalysts are very active, and the last one showed high stability in the lifetime test. The structural characterization revealed that in the AuPd(3:1)/TiO2 catalyst, Au-Pd alloy particles were formed and a high percentage of Au atoms was located at the surface. Therefore, this sonication-assisted method is efficient and rapid in the preparation of supported metal catalysts with obvious structural characteristics for various catalytic applications.
Green Chemistry | 2017
Kadambari Lokesh; Christopher West; Johan Kuylenstierna; Jiajun Fan; Vitaliy L. Budarin; Peter Priecel; Jose Antonio Lopez-Sanchez; James H. Clark
This paper evaluates and quantifies the environmental performance of alkyl polyglucosides sourced from wheat straw (WS-APG), a low-cost and low-ecological impact agricultural residue, compared to that of their commercial counterpart, which is sourced from palm kernel oil and wheat grain (PW-APG). Escalating pressure to consider the environmental sustainability of fossil derived surfactant consumption has driven biosurfactants to become the product of choice within the surfactant market, and a class of ‘plant’ based non-ionic surfactants called alkyl polyglucosides (APG) are particularly prevalent. However, the existing food based feedstock of APG such as coconut oil, palm oil, wheat and corn (in addition to being expensive) will potentially undermine the claimed ‘sustainability’ of the APG products (i.e. the ‘food vs. chemical’ issue). Here, we present the “cradle-to-gate” life cycle impact assessment of a suggested alternative, hybridised APG synthesis technique where the Fisher glycosidation method is supplemented by novel, green chemistry based techniques. This evaluation provides a quantitative insight into direct GHG intensity and other ecological impact indicators, including land use, waste generation and energy consumption. Upon evaluation, the wheat straw-derived pathway delivered GHG-emission savings in the range of 84–98%, compared to that of the palm kernel–wheat grain pathway. Waste generated from the production of unit mass of the product amounted to 0.43 kg and 10.73 kg per kg of WS-APG and PW-APG, respectively. In addition to the above mentioned facts, the ‘cradle–gate’ stages of WS-APG production were also found to consume relatively lower amounts of water and fossil-derived energy. In conclusion, of the two APG production pathways, the suggested ‘hybrid’ pathway using an agricultural residue, wheat straw, was found to be sustainable and to demonstrate better environmental performance.
Applied Catalysis A-general | 2011
Peter Priecel; David Kubička; Libor Čapek; Zdeněk Bastl; Petr Ryšánek
Catalysis Today | 2011
Peter Priecel; Libor Čapek; David Kubička; František Homola; Petr Ryšánek; Miloslav Pouzar
Industrial & Engineering Chemistry Research | 2018
Peter Priecel; Nor Azam Endot; Piera Demma Carà; Jose Antonio Lopez-Sanchez