Peter R. Guenther
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter R. Guenther.
Global Biogeochemical Cycles | 1999
Nicolas Gruber; Charles D. Keeling; Robert B. Bacastow; Peter R. Guenther; Timothy J. Lueker; Martin Wahlen; Harro A. J. Meijer; Willem G. Mook; Thomas F. Stocker
A global synthesis of the 13C/12C ratio of dissolved inorganic carbon (DIC) in the surface ocean is attempted by summarizing high-precision data obtained from 1978 to 1997 in all major ocean basins. The data, mainly along transects but including three subtropical time series, are accompanied by simultaneous, precise measurements of DIC concentration and titration alkalinity. The reduced isotopic ratio, δ13C, in the surface ocean water is governed by a balance between biological and thermodynamic processes. These processes have strongly opposing tendencies, which result in a complex spatial pattern in δ13C with relatively little variability. The most distinctive feature in the spatial distribution of δ13C seen in our data is a maximum of δ13C near the subantarctic front with sharply falling values to the south. We attribute this feature to a combination of biological uptake of CO2 depleted in 13C (low δ13C) and air-sea exchange near the front and upwelling further south of waters with low δ13C resulting from the remineralization of organic matter. Additional features are maxima in δ13C downstream of upwelling regions, reflecting biological uptake, and minima in the subtropical gyres caused by strongly temperature dependent thermodynamic isotopic fractionation. At the time series stations, two in the North Atlantic Ocean and one in the North Pacific, distinct seasonal cycles in δ13C are observed, the Pacific data exhibiting only about half the amplitude of the Atlantic. Secular decreases in δ13C caused by the invasion of isotopically light anthropogenic CO2 into the ocean (the 13C Suess effect) have been identified at these time series stations and also in data from repeated transects in the Indian Ocean and the tropical Pacific. A tentative global extrapolation of these secular decreases yields a surface oceanic 13C Suess effect of approximately −0.018‰ yr−1 from 1980 to 1995. This effect is nearly the same as the 13C Suess effect observed globally in the atmosphere over the same period. We attribute this response to a deceleration in the growth rate of anthropogenic CO2 emissions after 1979, which subsequently has reduced the atmospheric 13C Suess effect more than the surface ocean effect.
Deep-sea Research Part Ii-topical Studies in Oceanography | 2001
Marilyn F. Lamb; Christopher L. Sabine; Richard A. Feely; R. Wanninkhof; Robert M. Key; Gregory C. Johnson; Frank J. Millero; Kitack Lee; T.-H. Peng; Alexander Kozyr; John L. Bullister; Dana Greeley; Robert H. Byrne; David W. Chipman; Andrew G. Dickson; Catherine Goyet; Peter R. Guenther; Masayoshi Ishii; Kenneth M. Johnson; Charles D. Keeling; Tsueno Ono; K. Shitashima; Bronte Tilbrook; Taro Takahashi; Douglas W.R. Wallace; Yutaka W. Watanabe; Christopher D. Winn; C. S. Wong
Between 1991 and 1999, carbon measurements were made on twenty-five WOCE/JGOFS/OACES cruises in the Pacific Ocean. Investigators from 15 different laboratories and four countries analyzed at least two of the four measurable ocean carbon parameters (DIC, TAlk, fCO2, and pH) on almost all cruises. The goal of this work is to assess the quality of the Pacific carbon survey data and to make recommendations for generating a unified data set that is consistent between cruises. Several different lines of evidence were used to examine the consistency, including comparison of calibration techniques, results from certified reference material analyses, precision of at-sea replicate analyses, agreement between shipboard analyses and replicate shore based analyses, comparison of deep water values at locations where two or more cruises overlapped or crossed, consistency with other hydrographic parameters, and internal consistency with multiple carbon parameter measurements. With the adjustments proposed here, the data can be combined to generate a Pacific Ocean data set, with over 36,000 unique sample locations analyzed for at least two carbon parameters in most cases. The best data coverage was for DIC, which has an estimated overall accuracy of ∼3 μmol kg−1. TAlk, the second most common carbon parameter analyzed, had an estimated overall accuracy of ∼5 μmol kg−1. To obtain additional details on this study, including detailed crossover plots and information on the availability of the compiled, adjusted data set, visit the Global Data Analysis Project web site at: http://cdiac.esd.ornl.gov/oceans/glodap.
Marine Chemistry | 1998
Kenneth M. Johnson; Andrew G. Dickson; Greg Eischeid; Catherine Goyet; Peter R. Guenther; Robert M. Key; Frank J. Millero; David Purkerson; Christopher L. Sabine; Rolf G Schottle; Douglas W.R. Wallace; Richard J. Wilke; Christopher D. Winn
Two single-operator multiparameter metabolic analyzers (SOMMA)-coulometry systems (I and II) for total carbon dioxide (TCO2) were placed on board the R/V Knorr for the US component of the Indian Ocean CO2 Survey in conjunction with the World Ocean Circulation Experiment-WOCE Hydrographic Program (WHP). The systems were used by six different measurement groups on 10 WHP Cruises beginning in December 1994 and ending in January 1996. A total of 18,828 individual samples were analyzed for TCO2 during the survey. This paper assesses the analytical quality of these data and the effect of several key factors on instrument performance. Data quality is assessed from the accuracy and precision of certified reference material (CRM) analyses from three different CRM batches. The precision of the method was 1.2 μmol/kg. The mean and standard deviation of the differences between the known TCO2 for the CRM (certified value) and the CRM TCO2 determined by SOMMA-coulometry were −0.91±0.58 (n=470) and −1.01±0.44 (n=513) μmol/kg for systems I and II, respectively, representing an accuracy of 0.05% for both systems. Measurements of TCO2 made on 12 crossover stations during the survey agreed to within 3 μmol/kg with an overall mean and standard deviation of the differences of −0.78±1.74 μmol/kg (n=600). The crossover results are therefore consistent with the precision of the CRM analyses. After 14 months of nearly continuous use, the accurate and the virtually identical performance statistics for the two systems indicate that the cooperative survey effort was extraordinarily successful and will yield a high quality data set capable of fulfilling the objectives of the survey.
Tellus A | 1976
Charles D. Keeling; Robert B. Bacastow; Arnold E. Bainbridge; Carl A. Ekdahl; Peter R. Guenther; Lee S. Waterman; John F. S. Chin
Tellus A | 1976
Charles D. Keeling; J. Alexander Adams; Carl A. Ekdahl; Peter R. Guenther
Tellus A | 1982
David W. T. Griffith; Charles D. Keeling; A. Adams; Peter R. Guenther; Robert B. Bacastow
Millero, F.J., Dickson, A.G., Eischeid, G., Goyet, C., Guenther, P., Johnson, K.M., Key, R.M., Lee, K., Purkerson, D., Sabine, C.L., Shottle, R.G., Wallace, Douglas W.R., Lewis, E. and Winn, C.D. (1998) Total alkalinity measurements in the Indian Ocean during the WOCE Hydrographic Program CO2 Survey cruises 1994-1996 Marine Chemistry, 63 . pp. 9-20. | 1998
Frank J. Millero; Andrew G. Dickson; Greg Eischeid; Catherine Goyet; Peter R. Guenther; Kenneth M. Johnson; Robert M. Key; Kitack Lee; David Purkerson; Christopher L. Sabine; R.G. Shottle; Douglas W.R. Wallace; Ernie R. Lewis; Christopher D. Winn
Scripps Institution of Oceanography | 1986
Charles D Keeling; Peter R. Guenther; Timothy P. Whorf
Scripps Institution of Oceanography | 1976
Peter R. Guenther; Charles D Keeling
Archive | 2000
Peter R. Guenther; Charles D. Keeling