Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter R. Wood is active.

Publication


Featured researches published by Peter R. Wood.


The Astrophysical Journal | 1998

The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XIII. The Metallicity Dependence of the Cepheid Distance Scale

Robert C. Kennicutt; Peter B. Stetson; Abhijit Saha; Dd Kelson; Daya M. Rawson; Shoko Sakai; Barry F. Madore; Jeremy R. Mould; Wendy L. Freedman; Fabio Bresolin; Laura Ferrarese; Holland C. Ford; Brad K. Gibson; John A. Graham; Mingsheng Han; Paul Harding; John G. Hoessel; John P. Huchra; Shaun M. G. Hughes; Garth D. Illingworth; Lucas M. Macri; Randy L. Phelps; Nancy Ann Silbermann; Anne Marie Turner; Peter R. Wood

Uncertainty in the metal-abundance dependence of the Cepheid variable period-luminosity (PL) relation remains one of the outstanding sources of systematic error in the extragalactic distance scale and in the Hubble constant. To test for such a metallicity dependence, we have used the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST) to observe Cepheids that span a range in oxygen abundance of 0.7 ± 0.15 dex in two fields in the nearby spiral galaxy M101. A differential analysis of the PL relations in V and I in the two fields yields a marginally significant change in the inferred distance modulus on metal abundance, with δ(m-M)0/δ[O/H] = -0.24 ± 0.16 mag dex-1. The trend is in the theoretically predicted sense that metal-rich Cepheids appear brighter and closer than metal-poor stars. External comparisons of Cepheid distances with those derived from three other distance indicators, in particular from the tip of the red giant branch method, further constrain the magnitude of any Z-dependence of the PL relation at V and I. The overall effects of any metallicity dependence on the distance scale derived with HST will be of the order of a few percent or less for most applications, though distances to individual galaxies at the extremes of the metal abundance range may be affected at the 10% level.


The Astrophysical Journal | 2006

Bump cepheids in the magellanic clouds: metallicities, the distances to the lmc and smc, and the pulsation-evolution mass discrepancy

Stefan C. Keller; Peter R. Wood

We use nonlinear pulsation models to reproduce the observed light and color curves for two samples of bump Cepheid variables, 19 from the Large Magellanic Cloud and 9 from the Small Magellanic Cloud. This analysis determines the fundamental parameters mass, luminosity, effective temperature, metallicity, distance, and reddening for the sample of stars. The use of the light-curve shape alone to determine metallicity is a new modeling technique introduced here. The metallicity, distance, and reddening distributions for the two samples are in agreement with those of similar stellar populations in the literature. The distance modulus of the Large Magellanic Cloud is determined to be 18.54 ± 0.018, and the distance modulus of the Small Magellanic Cloud is determined to be 18.93 ± 0.024. The mean Cepheid metallicities are Z = 0.0091 ± 0.0007 and 0.0050 ± 0.0005 for the LMC and SMC, respectively. The masses derived from pulsation analysis are significantly less than those predicted by stellar evolutionary models with no or mild convective core overshoot. We show that this discrepancy cannot be accounted for by uncertainties in our input opacities or in mass-loss physics. We interpret the observed mass discrepancy in terms of enhanced internal mixing in the vicinity of the convective core during the main-sequence lifetime and find that the overshoot parameter Λc rises from 0.688 ± 0.009Hp at the mean LMC metallicity to 0.746 ± 0.009Hp in the SMC.


Astrophysical Journal Supplement Series | 1999

The Type Ia Supernova 1998bu in M96 and the Hubble Constant

Saurabh W. Jha; Peter Marcus Garnavich; Robert P. Kirshner; Peter M. Challis; Alicia M. Soderberg; Lucas M. Macri; John P. Huchra; Pauline Barmby; Elizabeth J. Barton; Perry L. Berlind; Warren R. Brown; Nelson Caldwell; Michael L. Calkins; Sheila J. Kannappan; Daniel M. Koranyi; Michael Andrew Pahre; Kenneth Rines; Krzysztof Zbigniew Stanek; Robert P. Stefanik; Andrew Szentgyorgyi; Petri Väisänen; Zhong Wang; Joseph Zajac; Adam G. Riess; Alexei V. Filippenko; Weidong Li; Maryam Modjaz; Richard R. Treffers; Carl W. Hergenrother; Eva K. Grebel

We present optical and near-infrared photometry and spectroscopy of the Type Ia SN 1998bu in the Leo I Group galaxy M96 (NGC 3368). The data set consists of 356 photometric measurements and 29 spectra of SN 1998bu between UT 1998 May 11 and July 15. The well-sampled light curve indicates the supernova reached maximum light in B on UT 1998 May 19.3 (JD 2450952.8 ± 0.8) with B = 12.22 ± 0.03 and V = 11.88 ± 0.02. Application of a revised version of the Multicolor Light Curve Shape (MLCS) method yields an extinction toward the supernova of AV = 0.94 ± 0.15 mag, and indicates the supernova was of average luminosity compared to other normal Type Ia supernovae. Using the HST Cepheid distance modulus to M96 and the MLCS fitted parameters for the supernova, we derive an extinction-corrected absolute magnitude for SN 1998bu at maximum, MV = -19.42 ± 0.22. Our independent results for this supernova are consistent with those of Suntzeff et al. Combining SN 1998bu with three other well-observed local calibrators and 42 supernovae in the Hubble flow yields a Hubble constant, H0 = 64 -->img1.gif km s-1 Mpc-1, where the error estimate incorporates possible sources of systematic uncertainty including the calibration of the Cepheid period-luminosity relation, the metallicity dependence of the Cepheid distance scale, and the distance to the LMC.


Astronomy and Astrophysics | 2001

Zero-metallicity stars - I. Evolution at constant mass

Paola Marigo; Leo Girardi; C. Chiosi; Peter R. Wood

We present extensive evolutionary models of stars with initial zero-metallicity, covering a large range of initial masses (i.e. 0:7 M M 100 M). Calculations are carried out at constant mass, with updated input physics, and applying an overshooting scheme to convective boundaries. The nuclear network includes all the important reactions of the p-p chain, CNO-cycle and -captures, and is solved by means of a suitable semi-implicit method. The evolution is followed up to the thermally pulsing AGB in the case of low- and intermediate-mass stars, or to the onset of carbon burning in massive stars. The main evolutionary features of these models are discussed, also in comparison with models of non-zero metallicity. Among several interesting aspects, particular attention has been paid to describe: i) the rst synthesis of 12 C inside the stars, that may suddenly trigger the CNO-cycle causing particular evolutionary features; ii) the pollution of the stellar surface by the dredge-up events, that are eective only within particular mass ranges; iii) the mass limits which conventionally dene the classes of low-, intermediate-, and high-mass stars on the basis of common evolutionary properties, including the upper mass limit for the achievement of super-Eddington luminosities before C-ignition in the high-mass regime; and iv) the expected pulsational properties of zero-metallicity stars. All relevant information referring to the evolutionary tracks and isochrones is made available in computer-readable format.


Monthly Notices of the Royal Astronomical Society | 2004

Asymptotic giant branch superwind speed at low metallicity

Jonathan R. Marshall; Jacco Th. van Loon; Mikako Matsuura; Peter R. Wood; Albert A. Zijlstra; Patricia A. Whitelock

We present the results of a survey for OH maser emission at 1612 MHz from dustenshrouded AGB stars and supergiants in the LMC and SMC, with the Parkes radio telescope, aimed at deriving the speed of the superwind from the double-peaked OH maser profiles. Out of 8 targets in the LMC we detected 5, of which 3 are new detections — no maser emission was detected in the two SMC targets. We detected for the first time the redshifted components of the OH maser profile in the extreme red supergiant IRAS 04553−6825, confirming the suspicion that its wind speed had been severely underestimated. Despite a much improved spectrum for IRAS 04407−7000, which was known to exhibit a single-peaked OH maser, no complementary peak could be detected. The new detection in IRAS 05003−6712 was also single-peaked, but for two other new detections, IRAS 04498−6842 and IRAS 05558−7000, wind speeds could be determined from their double-peaked maser profiles. The complete sample of known OH/IR stars in the LMC is compared with a sample of OH/IR stars in the galactic centre. The LMC sources generally show a pronounced asymmetry between the bright blueshifted maser emission and weaker redshifted emission, which we attribute to the greater contribution of amplification of radiation coming directly from the star itself as the LMC sources are both more luminous and less dusty than their galactic centre counterparts. We confirm that the OH maser strength is a measure of the dust (rather than gas) mass-loss rate. At a given luminosity or pulsation period, the wind speed in LMC sources is lower than in galactic centre sources, and the observed trends confirm simple radiation-driven wind theory if the dust-to-gas ratio is approximately proportional to the metallicity.


Monthly Notices of the Royal Astronomical Society | 2006

A Spitzer mid-infrared spectral survey of mass-losing carbon stars in the Large Magellanic Cloud

Albert A. Zijlstra; Mikako Matsuura; Peter R. Wood; G. C. Sloan; E. Lagadec; Jacco Th. van Loon; M. A. T. Groenewegen; M. W. Feast; John W. Menzies; Patricia A. Whitelock; J. A. D. L. Blommaert; M-R.L. Cioni; Harm Jan Habing; Sacha Hony; C. Loup; L. B. F. M. Waters

We present a Spitzer Space Telescopespectroscopic survey of mass-losing carbon stars (and one oxygen-rich star) in the Large Magellanic Cloud. The stars represent the superwind phase on the Asymptotic Giant Branch, which forms a major source of dust for the interstellar medium in galaxies. The spectra cover the wavelength range 5‐38� m. They show varying combinations of dust continuum, dust emission features (SiC, MgS) and molecular absorption bands (C2H2, HCN). A set of four narrow bands, dubbed the Manchester system, is used to define the infrared continuum for dusty carbon stars. The r elations between the continuum colours and the strength of the dust and molecular features are studied, and are compared to Galactic stars of similar colours. The circumstellar 7-� m C2H2 band is found to be stronger at lower metallicity, from a comparison of stars in the Galaxy, the LMC and the SMC. This is explained by dredge-up of carbon, causing higher C/O ratios at low metallicity (less O). A possible 10-� m absorption feature seen in our spectra may be due to C3. This band has also been identified with interstellar silicate or silicon-nitr ite dust. We investigate the strength and central wavelength of the SiC and MgS dust bands as function of colour and metallicity. The line-to-continuum ratio of these bands shows some indication of being lower at low metallicity. The MgS band is only seen at dust temperatures below 600 K. We discuss the selection of carbon versus oxygen-rich AGB stars using the J K vs. K A colours, and show that these colours are relatively insensitive to chemical type. Metal -poor carbon stars form amorphous carbon dust from self-produced carbon. This type of dust forms more readily in the presence of a higher C/O ratio. Low metallicity carbon dust may contain a smaller fraction of SiC and MgS constituents, which do depend on metallicity. The formation efficiency of oxygen-rich dust depends more strongly on metallicity. We suggest that in lower-metallicity environments, the dust input into the Interstellar Medium by AGB stars is efficient but may be strongly biassed towards carbonaceous dust, as compared to the Galaxy.


The Astrophysical Journal | 2004

Long Secondary Periods in Pulsating Asymptotic Giant Branch Stars: An Investigation of Their Origin

Peter R. Wood; Enrico A. Olivier; Steven D. Kawaler

Approximately 25%-30% of pulsating asymptotic giant branch (AGB) stars show long secondary periods (LSPs) of typical length ~400-1500 days, roughly 10 times longer than the primary period of pulsation. Here we seek an explanation for the LSPs. We describe the spectral variations over a 4 yr interval for three of these stars. The radial velocity is found to vary during the LSP with full amplitude of ~5 km s-1, a result similar to that found by Hinkle and coworkers for six other variables of this type. Variations in the Hα and Na D line profiles throughout the LSP suggest that chromospheric activity and mass loss vary with the period of the LSP. Possible explanations for the photometric and radial velocity variations include eccentric motion of an orbiting companion of mass ~0.1 M☉, radial and nonradial pulsation, rotation of an ellipsoidal-shaped red giant, episodic dust ejection, and star spot cycles. We discuss each of these models and show that they all have problems. The most likely explanation is that the LSPs result from a low degree g+ mode confined to the outer radiative layers of the red giant, combined with large-scale star spot activity to give the observed chromosphere and the irregularity of the light curve. We suggest that these stars may be the precursors of asymmetric planetary nebulae.


The Astrophysical Journal | 2008

The Magellanic Zoo: Mid-Infrared Spitzer Spectroscopy of Evolved Stars and Circumstellar Dust in the Magellanic Clouds

G. C. Sloan; Kathleen E. Kraemer; Peter R. Wood; Albert A. Zijlstra; J. Bernard-Salas; D. Devost; J. R. Houck

We observed a sample of evolved stars in the Large and Small Magellanic Clouds (LMC and SMC) with the Infrared Spectrograph on the Spitzer Space Telescope. Comparing samples from the SMC, LMC, and the Galaxy reveals that the dust production rate depends on metallicity for oxygen-rich stars, but carbon stars with similar pulsation properties produce similar quantities of dust, regardless of their initial metallicity. Other properties of the oxygen-rich stars also depend on metallicity. As the metallicity decreases, the fraction of naked (i.e., dust-free) stars increases, and among the naked stars, the strength of the 8 μm absorption band from SiO decreases. Our sample includes several massive stars in the LMC with long pulsation periods that produce significant amounts of dust, probably because they are young and relatively metal-rich. Little alumina dust is seen in circumstellar shells in the SMC and LMC, unlike in Galactic samples. Three oxygen-rich sources also show emission from magnesium-rich crystalline silicates. Many also show an emission feature at 14 μm. The one S star in our sample shows a newly detected emission feature centered at 13.5 μm. At lower metallicity, carbon stars with similar amounts of amorphous carbon in their shells have stronger absorption from molecular acetylene (C2H2) and weaker emission from SiC and MgS dust, as discovered in previous studies.


Astronomy and Astrophysics | 2008

Molecules and dust production in the Magellanic Clouds

J. Th. van Loon; Martin Cohen; J. M. Oliveira; Mikako Matsuura; I. McDonald; G. C. Sloan; Peter R. Wood; Albert A. Zijlstra

We present ESO/VLT spectra in the 2.9−4.1 μm range for a large sample of infrared stars in the Small Magellanic Cloud (SMC), mainly carbon stars, massive oxygen-rich Asymptotic Giant Branch (AGB) stars, and red supergiants. Strong emission from Polycyclic Aromatic Hyrdrocarbons (PAHs) is detected in the spectrum of the post-AGB object MSX SMC 29. Water ice is detected in at least one Young Stellar Object, IRAS 01042−7215, for the first time in the SMC. The strength and shapes of the molecular bands detected in the evolved stars are compared with similar data for stars in the Large Magellanic Cloud (LMC). Absorption from acetylene in carbon stars is found to be equally strong in the SMC as in the LMC, but the LMC stars show stronger dust emission in their infrared colours and veiling of the molecular bands. This suggests that a critical link exists in the formation of dust from the molecular atmosphere in carbon stars which scales with the initial metallicity. Nucleation seeds based on a secondary element such as titanium or silicon provide a plausible explanation. In oxygen-rich stars, both the nucleation seeds and molecular condensates depend on secondary elements (in particular titanium, silicon, and/or aluminium), which explains the observed lower molecular abundances and lower dust content in the SMC stars. Emission from silicon monoxide seen in some oxygen-rich AGB stars and red supergiants in the SMC suggests that these metal-poor stars are able to drive strong pulsation shocks through their molecular layers. Data for pulsating dusty AGB stars and supergiants in the LMC are used to show that pulsation is likely the critical factor in driving mass loss, as long as dust forms, rather than the stellar luminosity. Finally, we suggest that the reduced dust production and consequently slower winds of metal-poor AGB stars and red supergiants are more likely to result in chemical inhomogeneities and small-scale structure in the interstellar medium.


Monthly Notices of the Royal Astronomical Society | 2007

Spitzer spectroscopy of carbon stars in the Small Magellanic Cloud

E. Lagadec; Albert A. Zijlstra; G. C. Sloan; Mikako Matsuura; Peter R. Wood; Jacco Th. van Loon; Gregory J. Harris; J. A. D. L. Blommaert; Sacha Hony; M. A. T. Groenewegen; M. W. Feast; Patricia A. Whitelock; John W. Menzies; M-R.L. Cioni

We present Spitzer Space telescopespectroscopic observations of 14 carbon-rich AGB stars in the Small Magellanic Cloud. SiC dust is seen in most of the carbon-rich stars but it is weak compared to LMC stars. The SiC feature is strong only for stars with significant dust excess, opposite to what is observed for Galactic stars. We argue that in the SMC, SiC forms at lower temperature than graphite dust, whereas the reverse situation occurs in the Galaxy where SiC condenses at higher temperatures and forms first. Dust input into the interstellar medium by AGB stars consists mostly of carbonaceous dust, with little SiC or silicate dust. Only the two coolest stars show a 30-micron band due to MgS dust. We suggest that this is due to the fact that, in the SMC, mass-losing AGB stars generally have low circumstellar (dust) optical depth and therefore effective heating of dust by the central star does not allow temperatures below the 650 K necessary for MgS to exist as a solid. Gas phase C2H2 bands are stronger in the SMC than in the LMC or Galaxy. This is attributed to an increasing C/O ratio at low metallicity. We present a colour-colour diagram based on Spitzer IRAC and MIPS colours to discriminate between O- and C-rich stars. We show that AGB stars in the SMC become carbon stars early in the thermal-pulsing AGB evolution, and remain optically visible for � 6 × 10 5 yr. For the LMC, this lifetime is � 3 × 10 5 yr. The superwind phase traced with Spitzer lasts for � 10 4 yr. Spitzer spectra of a K supergiant and a compact HII region are also given.

Collaboration


Dive into the Peter R. Wood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Dopita

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Michael S. Bessell

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Scholz

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. A. T. Groenewegen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge