Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Rosén is active.

Publication


Featured researches published by Peter Rosén.


Science | 2012

2.8 Million Years of Arctic Climate Change from Lake El’gygytgyn, NE Russia

Martin Melles; Julie Brigham-Grette; Pavel S Minyuk; Norbert R Nowaczyk; Volker Wennrich; Robert M. DeConto; Patricia M. Anderson; Andrei Andreev; Anthony Coletti; Timothy L Cook; Eeva Haltia-Hovi; Maaret Kukkonen; Anatoli V. Lozhkin; Peter Rosén; Pavel E. Tarasov; Hendrik Vogel; Bernd Wagner

Crater Core The high-northern latitudes of the Arctic have an important influence on climate and constitute a region with a unique array of complex feedbacks that make it difficult to understand the workings of its climate. Melles et al. (p. 315, published online 21 June) developed a 2.8-million-year record of Arctic climate, using a sediment core from a lake in northeastern Russia that was formed more than 3.5 million years ago by a meteorite impact. Pronounced glacial episodes began 2.6 million years ago but did not achieve orbital pacing for another 700,000 years. A sediment core from a Russian lake provides a high-latitude climate record where prior terrestrial records have been sparse. The reliability of Arctic climate predictions is currently hampered by insufficient knowledge of natural climate variability in the past. A sediment core from Lake El’gygytgyn in northeastern (NE) Russia provides a continuous, high-resolution record from the Arctic, spanning the past 2.8 million years. This core reveals numerous “super interglacials” during the Quaternary; for marine benthic isotope stages (MIS) 11c and 31, maximum summer temperatures and annual precipitation values are ~4° to 5°C and ~300 millimeters higher than those of MIS 1 and 5e. Climate simulations show that these extreme warm conditions are difficult to explain with greenhouse gas and astronomical forcing alone, implying the importance of amplifying feedbacks and far field influences. The timing of Arctic warming relative to West Antarctic Ice Sheet retreats implies strong interhemispheric climate connectivity.


The Holocene | 2001

Holocene climatic change reconstructed from diatoms, chironomids, pollen and near-infrared spectroscopy at an alpine lake (Sjuodjijaure) in northern Sweden

Peter Rosén; Ulf Segerström; Lars Eriksson; Ingemar Renberg; H. J. B. Birks

The results of a multiproxy study reconstructing the climate history of the last 9300 years in northern Sweden are presented. It is based on diatom, chironomid and pollen analyses, as well as near-infrared spec troscopy (NIRS), of a radiocarbon dated sediment core from Sjuodjijaure (67°22N, 18°04E), situated 100 m above tree-line in the Scandes mountains. Mean July air temperature was reconstructed using transfer functions established for the region. The biological proxies show significant changes in composition during the Holocene and the inferred temperatures all follow the same general trend. For the period between about 9300 to 7300 cal. BP the reconstructions should be interpreted with caution due to the lack of convincing modern analogues in the training set. However the reconstruction suggest that July temperature was on average about the same as today, with several rapid short-term cold and warm periods. Cold periods were dated to about 8500, 8200 and 7600 cal. years BP and a warm period to about 7700 cal. BP. About 7300 cal. BP, a major shift to a warmer climate occurred. Pine migrated into the area, which was previously covered with birch forest. From the mid-Holocene until today the sediment record suggests a descending tree-limit and a gradual lowering of July temperature.


Journal of Paleolimnology | 2000

Diatom transfer-functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden

Peter Rosén; R Hall; Tom Korsman; Ingemar Renberg

The relationships between diatoms (Bacillariophyceae) in surface sediments of lakes and summer air temperature, pH and total organic carbon concentration (TOC) were explored along a steep climatic gradient in northern Sweden to provide a tool to infer past climate conditions from sediment cores. The study sites are in an area with low human impact and range from boreal forest to alpine tundra. Canonical correspondence analysis (CCA) constrained to mean July air temperature and pH clearly showed that diatom community composition was different between lakes situated in conifer-, mountain birch- and alpine-vegetation zones. As a consequence, diatoms and multivariate ordination methods can be used to infer past changes in treeline position and dominant forest type. Quantitative inference models were developed to estimate mean July air temperature, pH and TOC from sedimentary diatom assemblages using weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regression. Relationships between diatoms and mean July air temperature were independent of lake-water pH, TOC, alkalinity and maximum depth. The results demonstrated that diatoms in lake sediments can provide useful and independent quantitative information for estimating past changes in mean July air temperature (R2jack = 0.62, RMSEP = 0.86 °C; R2 and root mean squared error of prediction (RMSEP) based on jack-knifing), pH (R2jack = 0.61, RMSEP = 0.30) and TOC (R2jack = 0.49, RMSEP = 1.33 mg l-1). The paper focuses mainly on the relationship between diatom community composition and mean July air temperature, but the relationships to pH and TOC are also discussed.


Geology | 2002

Anomalously mild Younger Dryas summer conditions in southern Greenland

Svante Björck; Ole Bennike; Peter Rosén; Camilla S. Andresen; S.J.P. Bohncke; Eigil Kaas; Daniel J. Conley

The first late-glacial lake sediments found in Greenland were analyzed with respect to a variety of environmental variables. The analyzed sequence covers the time span between 14400 and 10500 calendar yr B.P., and the data imply that the conditions in southernmost Greenland during the Younger Dryas stadial, 12800-11550 calendar yr B.P., were characterized by an arid climate with cold winters and mild summers, preceded by humid conditions with cooler summers. Climate models imply that such an anomaly may be explained by local climatic phenomenon caused by high insolation and Fohn effects. It shows that regional and local variations of Younger Dryas summer conditions in the North Atlantic region may have been larger than previously found from proxy data and modeling experiments.


Science of The Total Environment | 2010

Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes

Johan Rydberg; Jonatan Klaminder; Peter Rosén; Richard Bindler

In sub-arctic and arctic regions mercury is an element of concern for both wildlife and humans. Over thousands of years large amounts of atmospherically deposited mercury, both from natural and anthropogenic sources, have been sequestered together with carbon in northern peatlands. Many of these peatlands are currently underlain by permafrost, which controls mire stability and hydrology. With the ongoing climate change there is concern that permafrost thawing will turn large areas of these northern peatlands from carbon/mercury-sinks into much wetter carbon/mercury-sources. Here we can show that such a change in mire structure in the sub-arctic Stordalen mire in northern Sweden actually is responsible for an increased export of mercury to the adjacent lake Inre Harrsjön. We also show that sediment mercury accumulation rates during a warm period in the pre-industrial past were higher than in the 1970s when atmospheric input peaked, indicating that in areas with permafrost, climate can have an effect on mercury loading to lakes as large as anthropogenic emissions. Thawing of permafrost and the subsequent export of carbon is a widespread phenomenon, and the projection is that it will increase even more in the near future. Together with our observations from Stordalen, this makes northern peatlands into a substantial source of mercury, at risk of being released into sensitive arctic freshwater and marine systems.


Arctic, Antarctic, and Alpine Research | 2003

Do Diatom, Chironomid, and Pollen Records Consistently Infer Holocene July Air Temperature? A Comparison Using Sediment Cores from Four Alpine Lakes in Northern Sweden

Peter Rosén; Ulf Segerström; Lars Eriksson; Ingemar Renberg

Abstract The aim of this study is to assess the performance of diatom, chironomid, and pollen transfer functions for inferences of July air temperature during the Holocene using sediments from four alpine lakes in an area with low human impact in northern Sweden. The study demonstrates that diatom, chironomid, and pollen assemblages in the sediment cores contain climate information so that present-day temperature at each lake can be inferred with reasonable confidence for most proxies. Most proxy records from the sites consistently infer a long-term decreasing trend in July air temperature from ca. 6000 cal yr BP until the present. However, there are also large variations in the temporal patterns of the inferred temperatures during some periods, especially before 7000 cal yr BP, when there are also nonsynchronous changes in loss-on-ignition in the four lakes. This variability indicates that local conditions in the catchments (influence of snowfields, soil-forming processes) had a large impact on the organism assemblages in the early Holocene. Long-distance transport of pollen into high alpine lakes makes temperature inferences from pollen transfer functions unreliable. Due to the uncertainties of the methods, predictive errors of the transfer functions, and variability caused by local catchment/lake characteristics, only long-term trends in climate can be inferred. High-resolution studies using diatoms, chironomids, and pollen for climate reconstruction are probably not meaningful during periods with small changes in climate (<1°C). Future research should concentrate on low-resolution, multiproxy, and multilake studies to further understand the relationship between the proxies and climate.


Journal of Geophysical Research | 2010

Quantifying the relative importance of lake emissions in the carbon budget of a subarctic catchment

Jan Karlsson; Torben R. Christensen; Patrick M. Crill; Johannes Förster; Dan Hammarlund; Marcin Jackowicz-Korczynski; Ulla Kokfelt; Charlotte L. Roehm; Peter Rosén

Climate change and thawing of permafrost will likely result in increased decomposition of terrestrial organic carbon and subsequent carbon emissions to the atmosphere from terrestrial and aquatic systems. The quantitative importance of mineralization of terrestrial organic carbon in lakes in relation to terrestrial carbon fluxes is poorly understood and a serious drawback for the understanding of carbon budgets. We studied a subarctic lake in an area of discontinuous permafrost to assess the quantitative importance of lake carbon emission for the catchment carbon balance. Estimates of net ecosystem production and stable carbon-isotope composition of dissolved organic carbon in the lake water suggest substantial input and respiration of terrestrial organic carbon in the lake. The lake was a net source of CO2 and CH4 to the atmosphere at ice breakup in spring and during the whole ice-free period. The carbon emission from the lake was similar in magnitude to the terrestrial net release of carbon to the atmosphere. The results indicate that lakes are important sources of catchment carbon emission, potentially increasing the positive feedback from permafrost thawing on global warming.


The Holocene | 2000

Near-infrared spectrometry (NIRS): a new tool for inferring past climatic changes from lake sediments

Peter Rosén; Eigil Dåbakk; Ingemar Renberg; Mats Nilsson; Roland I. Hall

This study tests the hypothesis that lake sediments containclimate–related information that can be detected by near–infrared spectrometry (NIRS), and that NIRS can be used to infer past climatic changes from analysis of sediment cores. NIRS is a rapid and non–destructive technique that measures attributes of the chemical composition of organic materials. A training set of 76 lakes from northern Sweden, spanning a broad altitudinal gradient, was used to assess whether lake altitude and vegetation zones can be modelled from NIR spectra of surface sediments (0–1 cm) using partial least squares (PLS) regression and soft independent modelling of class analogies (SIMCA) classification. Lake altitude served as a surrogate variable reflecting differences in climatic conditions among sites. After spectral filtering using orthogonal signal correction (OSC), cross-validated predictions explained 86% of the variance in altitude and the prediction error (root mean square error) was 78 m, corresponding to 8.3%o of the gradient (390–1250 m above sea level). To evaluate the significance of NIR spectral differences between surface sediments of lakes in different vegetation zones (mountain–birch forest, dwarf shrub and alpine heath), principal component analysis (PCA) models were developed separately for lakes in each vegetation zone. Multivariate classification analysis demonstrated that NIR spectra of surficial sediments differed between lakes located in different vegetation zones. A separate sediment data set from 56 lakes was used to assess sediment ageing effects on NIR signals. Marked similarities between NIR spectra in surface sediments (0–1 cm) and sediments from 1–2 cm depth indicated that degradation of organic material following sediment consolidation resulted in little loss or change of climate–related information. Finally, to assess the ability of NIRS methods to reconstruct past climatic changes over Holocene timescales, we applied the NIRS–altitude model to sediments in a core from a small mountain lake. Estimates of mean July air temperature based on the NIRS–altitude transfer function showed similar trends compared with inferences from chironomids, diatoms and pollen from the same core. Overall, the results indicate that changes in NIR spectra from lake sediments reflect differences in climate, and that NIRS models based on surface–sediment samples can be applied to sediment cores for retrospective analysis.


Environmental Science & Technology | 2011

Universally Applicable Model for the Quantitative Determination of Lake Sediment Composition Using Fourier Transform Infrared Spectroscopy

Peter Rosén; Hendrik Vogel; Laura Cunningham; Annette Hahn; Sonja Hausmann; Reinhard Pienitz; Bernd Zolitschka; Bernd Wagner; Per Persson

Fourier transform infrared spectroscopy (FTIRS) can provide detailed information on organic and minerogenic constituents of sediment records. Based on a large number of sediment samples of varying age (0-340,000 yrs) and from very diverse lake settings in Antarctica, Argentina, Canada, Macedonia/Albania, Siberia, and Sweden, we have developed universally applicable calibration models for the quantitative determination of biogenic silica (BSi; n = 816), total inorganic carbon (TIC; n = 879), and total organic carbon (TOC; n = 3164) using FTIRS. These models are based on the differential absorbance of infrared radiation at specific wavelengths with varying concentrations of individual parameters, due to molecular vibrations associated with each parameter. The calibration models have low prediction errors and the predicted values are highly correlated with conventionally measured values (R = 0.94-0.99). Robustness tests indicate the accuracy of the newly developed FTIRS calibration models is similar to that of conventional geochemical analyses. Consequently FTIRS offers a useful and rapid alternative to conventional analyses for the quantitative determination of BSi, TIC, and TOC. The rapidity, cost-effectiveness, and small sample size required enables FTIRS determination of geochemical properties to be undertaken at higher resolutions than would otherwise be possible with the same resource allocation, thus providing crucial sedimentological information for climatic and environmental reconstructions.


AMBIO: A Journal of the Human Environment | 2007

Mercury Pollution Trends in Subarctic Lakes in the Northern Swedish Mountains

Carola Lindeberg; Richard Bindler; Christian Bigler; Peter Rosén; Ingemar Renberg

Abstract Despite many years of research about mercury pollution, data concerning high-latitude regions of Europe are limited, particularly studies of long-term temporal trends. It is not clear whether the mercury load at high latitudes follows the recent decreasing trends in European mercury emissions or whether the load is still high because of continuing global emissions. In this study we use sediments from 12 lakes, located above the Arctic Circle in the Swedish mountains, to assess the past and recent mercury pollution situation, especially for the last 200 y. The mercury load increased clearly in sediment deposited from the late 19th or early 20th century to a peak between 1960 and 1990. This peak represents an enrichment of 1.4 to 4.2 times over background concentrations. This enrichment is comparable with enrichments in sediments from lower latitudes as well as other Arctic regions. Since the 1990s mercury concentration has declined in 8 of the 12 lakes, i.e., similar to emission trends in Europe.

Collaboration


Dive into the Peter Rosén's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei Andreev

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Julie Brigham-Grette

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pavel S Minyuk

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Robert M. DeConto

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Timothy L Cook

Worcester State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge