Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Ruggiero is active.

Publication


Featured researches published by Peter Ruggiero.


Journal of Coastal Research | 2005

Seasonal to Interannual Morphodynamics along a High-Energy Dissipative Littoral Cell

Peter Ruggiero; George M. Kaminsky; Guy Gelfenbaum; Brian Voigt

Abstract A beach morphology monitoring program was initiated during summer 1997 along the Columbia River littoral cell (CRLC) on the coasts of northwest Oregon and southwest Washington, USA. This field program documents the seasonal through interannual morphological variability of these high-energy dissipative beaches over a variety of spatial scales. Following the installation of a dense network of geodetic control monuments, a nested sampling scheme consisting of cross-shore topographic beach profiles, three-dimensional topographic beach surface maps, nearshore bathymetric surveys, and sediment size distribution analyses was initiated. Beach monitoring is being conducted with state-of-the-art real-time kinematic differential global positioning system survey methods that combine both high accuracy and speed of measurement. Sampling methods resolve variability in beach morphology at alongshore length scales of approximately 10 meters to approximately 100 kilometers and cross-shore length scales of approximately 1 meter to approximately 2 kilometers. During the winter of 1997/1998, coastal change in the US Pacific Northwest was greatly influenced by one of the strongest El Niño events on record. Steeper than typical southerly wave angles resulted in alongshore sediment transport gradients and shoreline reorientation on a regional scale. The La Niña of 1998/1999, dominated by cross-shore processes associated with the largest recorded wave year in the region, resulted in net beach erosion along much of the littoral cell. The monitoring program successfully documented the morphological response to these interannual forcing anomalies as well as the subsequent beach recovery associated with three consecutive moderate wave years. These morphological observations within the CRLC can be generalized to explain overall system patterns; however, distinct differences in large-scale coastal behavior (e.g., foredune ridge morphology, sandbar mor-phometrics, and nearshore beach slopes) are not readily explained or understood.


International Journal of Biodiversity Science, Ecosystems Services & Management | 2012

Modeling benefits from nature: using ecosystem services to inform coastal and marine spatial planning

Anne D. Guerry; Mary Ruckelshaus; Joey R. Bernhardt; Gregory Guannel; Choong Ki Kim; Matthew Marsik; Michael Papenfus; Jodie E. Toft; Gregory Verutes; Spencer A. Wood; Michael W. Beck; Francis Chan; Kai M. A. Chan; Guy Gelfenbaum; Barry Gold; Benjamin S. Halpern; William Labiosa; Sarah E. Lester; Phil S. Levin; Melanie McField; Malin L. Pinsky; Mark L. Plummer; Stephen Polasky; Peter Ruggiero; David A. Sutherland; Heather Tallis; Andrew Day; Jennifer Spencer

People around the world are looking to marine ecosystems to provide additional benefits to society. As they consider expanding current uses and investing in new ones, new management approaches are needed that will sustain the delivery of the diverse benefits that people want and need. An ecosystem services framework provides metrics for assessing the quantity, quality, and value of benefits obtained from different portfolios of uses. Such a framework has been developed for assessments on land, and is now being developed for application to marine ecosystems. Here, we present marine Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), a new tool to assess (i.e., map, model, and value) multiple services provided by marine ecosystems. It allows one to estimate changes in a suite of services under different management scenarios and to investigate trade-offs among the scenarios, including implications of drivers like climate. We describe key inputs and outputs of each of the component ecosystem service models and present results from an application to the West Coast of Vancouver Island, British Columbia, Canada. The results demonstrate how marine InVEST can be used to help shape the dialogue and inform decision making in a marine spatial planning context.


Journal of Geophysical Research | 2004

Wave run-up on a high-energy dissipative beach

Peter Ruggiero; Robert A. Holman; R. A. Beach

[1] Because of highly dissipative conditions and strong alongshore gradients in foreshore beach morphology, wave run-up data collected along the central Oregon coast during February 1996 stand in contrast to run-up data currently available in the literature. During a single data run lasting approximately 90 min, the significant vertical run-up elevation varied by a factor of 2 along the 1.6 km study site, ranging from 26 to 61% of the offshore significant wave height, and was found to be linearly dependent on the local foreshore beach slope that varied by a factor of 5. Run-up motions on this high-energy dissipative beach were dominated by infragravity (low frequency) energy with peak periods of approximately 230 s. Incident band energy levels were 2.5 to 3 orders of magnitude lower than the low-frequency spectral peaks and typically 96% of the run-up variance was in the infragravity band. A broad region of the run-up spectra exhibited an f -4 roll off, typical of saturation, extending to frequencies lower than observed in previous studies. The run-up spectra were dependent on beach slope with spectra for steeper foreshore slopes shifted toward higher frequencies than spectra for shallower foreshore slopes. At infragravity frequencies, run-up motions were coherent over alongshore length scales in excess of 1 km, significantly greater than decorrelation length scales on moderate to reflective beaches.


Journal of Coastal Research | 2006

Comparing Mean High Water and High Water Line Shorelines: Should Proxy-Datum Offsets be Incorporated into Shoreline Change Analysis?

Laura J. Moore; Peter Ruggiero; Jeffrey H. List

Abstract More than one type of shoreline indicator can be used in shoreline change analyses, and quantifying the effects of this practice on the resulting shoreline change rates is important. Comparison of three high water line (proxy-based) shorelines and a mean high water intercept (datum-based) shoreline collected from simultaneous aerial photographic and lidar surveys of a relatively steep reflective beach (tan β = 0.07), which experiences a moderately energetic wave climate (annual average Hs = 1.2 m), reveals an average horizontal offset of 18.8 m between the two types of shoreline indicators. Vertical offsets are also substantial and are correlated with foreshore beach slope and corresponding variations in wave runup. Incorporating the average horizontal offset into both a short-term, endpoint shoreline change analysis and a long-term, linear regression analysis causes rates to be shifted an average of −0.5 m/y and −0.1 m/y, respectively. The rate shift increases with increasing horizontal offset and decreasing measurement intervals and, depending on the rapidity of shoreline change rates, is responsible for varying degrees of analysis error. Our results demonstrate that under many circumstances, the error attributable to proxy-datum offsets is small relative to shoreline change rates and thus not important. Furthermore, we find that when the error associated with proxy-datum offsets is large enough to be important, the shoreline change rates themselves are not likely to be significant. A total water level model reveals that the high water line digitized by three independent coastal labs for this study was generated by a combination of large waves and a high tide several days before the collection of aerial photography. This illustrates the complexity of the high water line as a shoreline indicator and calls into question traditional definitions, which consider the high water line a wetted bound or “marks left by the previous high tide.”


Earthquake Spectra | 2006

Northwest Sumatra and Offshore Islands Field Survey after the December 2004 Indian Ocean Tsunami

Bruce E. Jaffe; Jose C. Borrero; Gegar Prasetya; Robert Peters; Brian G. McAdoo; Guy Gelfenbaum; Robert A. Morton; Peter Ruggiero; Bretwood Higman; Lori Dengler; Rahman Hidayat; Ettiene Kingsley; Widjo Kongko; Lukijanto; Andrew Moore; Vasily V. Titov; Eko Yulianto

An International Tsunami Survey Team (ITST) conducted field surveys of tsunami effects on the west coast of northern and central Sumatra and offshore islands 3–4 months after the 26 December 2004 tsunami. The study sites spanned 800 km of coastline from Breuh Island north of Banda Aceh to the Batu Islands, and included 22 sites in Aceh province in Sumatra and on Simeulue Island, Nias Island, the Banyak Islands, and the Batu Islands. Tsunami runup, elevation, flow depth, inundation distance, sedimentary characteristics of deposits, near-shore bathymetry, and vertical land movement (subsidence and uplift) were studied. The maximum tsunami elevations were greater than 16 m, and the maximum tsunami flow depths were greater than 13 m at all sites studied along 135 km of coastline in northwestern Sumatra. Tsunami flow depths were as much as 10 m at 1,500 m inland. Extensive tsunami deposits, primarily composed of sand and typically 5–20 cm thick, were observed in northwestern Sumatra.


Ecology | 2012

Biophysical feedback mediates effects of invasive grasses on coastal dune shape

Phoebe L. Zarnetske; Sally D. Hacker; Eric W. Seabloom; Peter Ruggiero; Jason R. Killian; Timothy B. Maddux; Daniel T. Cox

Vegetation at the aquatic-terrestrial interface can alter landscape features through its growth and interactions with sediment and fluids. Even similar species may impart different effects due to variation in their interactions and feedbacks with the environment. Consequently, replacement of one engineering species by another can cause significant change in the physical environment. Here we investigate the species-specific ecological mechanisms influencing the geomorphology of U.S. Pacific Northwest coastal dunes. Over the last century, this system changed from open, shifting sand dunes with sparse vegetation (including native beach grass, Elymus mollis), to densely vegetated continuous foredune ridges resulting from the introduction and subsequent invasions of two nonnative grass species (Ammophila arenaria and Ammophila breviligulata), each of which is associated with different dune shapes and sediment supply rates along the coast. Here we propose a biophysical feedback responsible for differences in dune shape, and we investigate two, non-mutually exclusive ecological mechanisms for these differences: (1) species differ in their ability to capture sand and (2) species differ in their growth habit in response to sand deposition. To investigate sand capture, we used a moveable bed wind tunnel experiment and found that increasing tiller density increased sand capture efficiency and that, under different experimental densities, the native grass had higher sand capture efficiency compared to the Ammophila congeners. However, the greater densities of nonnative grasses under field conditions suggest that they have greater potential to capture more sand overall. We used a mesocosm experiment to look at plant growth responses to sand deposition and found that, in response to increasing sand supply rates, A. arenaria produced higher-density vertical tillers (characteristic of higher sand capture efficiency), while A. breviligulata and E. mollis responded with lower-density lateral tiller growth (characteristic of lower sand capture efficiency). Combined, these experiments provide evidence for a species-specific effect on coastal dune shape. Understanding how dominant ecosystem engineers, especially nonnative ones, differ in their interactions with abiotic factors is necessary to better parameterize coastal vulnerability models and inform management practices related to both coastal protection ecosystem services and ecosystem restoration.


25th International Conference on Coastal Engineering | 1997

EXTREME WATER LEVELS, WAVE RUNUP AND COASTAL EROSION

Peter Ruggiero; Paul D. Komar; William G. McDougal; R.A. Beach

A study of alternatives including a shoreline evolution numerical modelization has been carried out in order to both diagnose the erosion problem at the beaches located between Cambrils Harbour and Pixerota delta (Tarragona, Spain) and select nourishment alternatives.


Journal of Geophysical Research | 2014

Simulating extreme total water levels using a time‐dependent, extreme value approach

Katherine A. Serafin; Peter Ruggiero

Coastal flood hazard zones and the design of coastal defenses are often devised using the maximum recorded water level or a “design” event such as the 100 year return level, usually projected from observed extremes. Despite technological advances driving more consistent instrumental records of waves and water levels, the observational record may be short, punctuated with intermittent gaps, and vary in quality. These issues in the record often preclude accurate and robust estimates of extreme return level events. Here we present a total water level full simulation model (TWL-FSM) that simulates the various components of TWLs (waves, tides, and nontidal residuals) in a Monte Carlo sense, taking into account conditional dependencies that exist between the various components. Extreme events are modeled using nonstationary extreme value distributions that include seasonality and climate variability. The resulting synthetic TWLs allow for empirical extraction of return level events and the ability to more robustly estimate and assess present-day flood and erosion hazards. The approach is demonstrated along a northern Oregon, USA littoral cell but is applicable to beaches anywhere wave and water level records or hindcasts are available. Simulations result in extreme 100 year TWL return levels as much as 90 cm higher than those extrapolated from the “observational” record. At the Oregon site, this would result in 30% more coastal flooding than the “observational” 100 year TWL return level projections. More robust estimates of extreme TWLs and tighter confidence bounds on return level events can aid coastal engineers, managers, and emergency planners in evaluating exposure to hazards.


Journal of Coastal Research | 2011

Sea Level Variations along the U.S. Pacific Northwest Coast: Tectonic and Climate Controls

Paul D. Komar; Jonathan C. Allan; Peter Ruggiero

Abstract Analyses of the progressive multidecadal trends and climate-controlled annual variations in mean sea levels are presented for nine tide-gauge stations along the coast of the U.S. Pacific Northwest: Washington, Oregon, and Northern California. The trends in relative sea levels are strongly affected by the tectonics of this region, characterized by significant alongcoast variations in changing land elevations measured by benchmarks and global positioning system data. These combined data sets document the existence of both submergent and emergent stretches of shore. The Pacific Northwest sea levels are also affected by variations in the monthly mean seasonal cycles, with its extreme water levels occurring in the winter during strong El Niños. To quantify this climate control and to derive improved multidecadal sea-level trends, separate evaluations of the winter and summer-averaged measured water levels have been undertaken. The resulting pair of linear regressions for each tide gauge shows a consistent difference in the mean water levels over the years, at their highest during the winters, reflecting the total magnitude in the seasonal cycle of water levels. Of importance, the degree of scatter in the summer averages is reduced compared with the annual averages, yielding sea-level trends that generally have the highest statistical significance. In contrast, the winter records emphasize the extreme water levels associated with strong El Niños, yielding a predictive correlation with the Multivariate El Niño/Southern Oscillation Index. Both trends in relative sea levels and extremes in the winter monthly elevations produced by El Niños are important to the Pacific Northwest coastal hazard assessments, combining with the multidecade increase in wave heights measured by buoys. With these multiple processes and their climate controls, the erosion hazards are projected to significantly increase in future decades.


Earth’s Future | 2015

Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

Jon D. Pelletier; A. Brad Murray; Jennifer L. Pierce; Paul R. Bierman; David D. Breshears; Benjamin T. Crosby; Michael A. Ellis; Efi Foufoula-Georgiou; Arjun M. Heimsath; Chris Houser; Nicholas Lancaster; Marco Marani; Dorothy J. Merritts; Laura J. Moore; Joel L. Pederson; Michael J. Poulos; Tammy M. Rittenour; Joel C. Rowland; Peter Ruggiero; Dylan J. Ward; Andrew D. Wickert; E. M. Yager

In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earths surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.

Collaboration


Dive into the Peter Ruggiero's collaboration.

Top Co-Authors

Avatar

Guy Gelfenbaum

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

George M. Kaminsky

Washington Department of Ecology

View shared research outputs
Top Co-Authors

Avatar

Patrick L. Barnard

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li H. Erikson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge