Peter S. Andersen
Symphogen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter S. Andersen.
Nature | 2015
Sophie M. Lehar; Thomas H. Pillow; Min Xu; Leanna Staben; Kimberly Kajihara; Richard Vandlen; Laura DePalatis; Helga Raab; Wouter L. W. Hazenbos; J. Hiroshi Morisaki; Janice Kim; Summer Park; Martine Darwish; Byoung-Chul Lee; Hilda Hernandez; Kelly M. Loyet; Patrick Lupardus; Rina Fong; Donghong Yan; Cecile Chalouni; Elizabeth Luis; Yana Khalfin; Emile Plise; Jonathan Cheong; Joseph P. Lyssikatos; Magnus Strandh; Klaus Koefoed; Peter S. Andersen; John A. Flygare; Man Wah Tan
Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody–antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody–antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.
mAbs | 2011
Klaus Koefoed; Lucilla Steinaa; Josefine Nielsen Søderberg; Ida Kjær; Helle Jacobsen; Per-Johan Meijer; John S. Haurum; Allan Jensen; Michael Kragh; Peter S. Andersen; Mikkel Wandahl Pedersen
The epidermal growth factor receptor (EGFR) is frequently dysregulated in human malignancies and a validated target for cancer therapy. Two monoclonal anti-EGFR antibodies (cetuximab and panitumumab) are approved for clinical use. However, the percentage of patients responding to treatment is low and many patients experiencing an initial response eventually relapse. Thus, the need for more efficacious treatments remains. Previous studies have reported that mixtures of antibodies targeting multiple distinct epitopes are more effective than single mAbs at inhibiting growth of human cancer cells in vitro and in vivo. The current work describes the rational approach that led to discovery and selection of a novel anti-EGFR antibody mixture Sym004, which is currently in Phase 2 clinical testing. Twenty-four selected anti-EGFR antibodies were systematically tested in dual and triple mixtures for their ability to inhibit cancer cells in vitro and tumor growth in vivo. The results show that targeting EGFR dependent cancer cells with mixtures of antibodies is superior at inhibiting their growth both in vitro and in vivo. In particular, antibody mixtures targeting non-overlapping epitopes on domain III are efficient and indeed Sym004 is composed of two monoclonal antibodies targeting this domain. The superior growth inhibitory activity of mixtures correlated with their ability to induce efficient EGFR degradation.
Journal of Immunology | 2007
Tine Rugh Poulsen; Per-Johan Meijer; Allan Jensen; Lars Soegaard Nielsen; Peter S. Andersen
Due to technical limitations, little knowledge exists on the composition of Ag-specific polyclonal Ab responses. Hence, we here present a molecular analysis of two representative human Ab repertoires isolated by using a novel single-cell cloning approach. The observed genetic diversity among tetanus toxoid-specific plasma cells indicate that human polyclonal repertoires are limited to the order of 100 B cell clones and hypermutated variants thereof. Affinity and kinetic binding constants are log-normally distributed, and median values are close to the proposed affinity ceilings for positive selection. Abs varied a million-fold in affinity but were restricted in their off-rates with an upper limit of 2 × 10−3 s−1. Identification of Abs of high affinity without hypermutations in combination with a modest effect of hypermutations on observed affinity increases indicate that Abs selected from the naive repertoire are not only of low affinity but cover a relatively large span in affinity, reaching into the subnanomolar range.
Journal of Immunology | 2011
Tine Rugh Poulsen; Allan Jensen; John S. Haurum; Peter S. Andersen
The immune system is known to generate a diverse panel of high-affinity Abs by adaptively improving the recognition of pathogens during ongoing immune responses. In this study, we report the biological limits for Ag-driven affinity maturation and repertoire diversification by analyzing Ab repertoires in two adult volunteers after each of three consecutive booster vaccinations with tetanus toxoid. Maturation of on-rates and off-rates occurred independently, indicating a kinetically controlled affinity maturation process. The third vaccination induced no significant changes in the distribution of somatic mutations and binding rate constants implying that the limits for affinity maturation and repertoire diversification had been reached. These fully matured Ab repertoires remained similar in size, genetically diverse, and dynamic. Somatic mutations and kinetic rate constants showed normal and log-normal distribution profiles, respectively. Mean values can therefore be considered as biological constants defining the observed boundaries. At physiological temperature, affinity maturation peaked at kon = 1.6 × 104 M−1 s−1 and koff = 1.7 × 10−4 s−1 leading to a maximum mean affinity of KD = 1.0 × 10−9 M. At ambient temperature, the average affinity increased to KD = 3.4 × 10−10 M mainly due to slower off-rates. This experimentally determined set of constants can be used as a benchmark for analysis of the maturation level of human Abs and Ab responses.
Blood | 2012
Tadeusz Robak; Jerzy Windyga; Jacek Treliński; Mario von Depka Prondzinski; Aristoteles Giagounidis; Chantal Doyen; Ann Janssens; María Teresa Álvarez-Román; Isidro Jarque; Javier Loscertales; Gloria Pérez Rus; Andrzej Hellmann; Wiesław Wiktor Jędrzejczak; Lana M. Golubovic; Dusica Celeketic; Andrei Cucuianu; Emanuil Gheorghita; Mihaela Lazaroiu; Ofer Shpilberg; Dina Attias; Elena Karyagina; Kalinina Svetlana; Kateryna Vilchevska; Nichola Cooper; Kate Talks; Mukhyaprana Prabhu; Prasad Sripada; T. P. R. Bharadwaj; Henrik Næsted; Niels Jørgen Østergaard Skartved
Rozrolimupab, a recombinant mixture of 25 fully human RhD-specific monoclonal antibodies, represents a new class of recombinant human antibody mixtures. In a phase 1 or 2 dose escalation study, RhD(+) patients (61 subjects) with primary immune thrombocytopenia received a single intravenous dose of rozrolimupab ranging from 75 to 300 μg/kg. The primary outcome was the occurrence of adverse events. The principal secondary outcome was the effect on platelet levels 7 days after the treatment. The most common adverse events were headache and pyrexia, mostly mild, and reported in 20% and 13% of the patients, respectively, without dose relationship. Rozrolimupab caused an expected transient reduction of hemoglobin concentration in the majority of the patients. At the dose of 300 μg/kg platelet responses, defined as platelet count ≥ 30 × 10(9)/L and an increase in platelet count by > 20 × 10(9)/L from baseline were observed after 72 hours and persisted for at least 7 days in 8 of 13 patients (62%). Platelet responses were observed within 24 hours in 23% of patients and lasted for a median of 14 days. Rozrolimupab was well tolerated and elicited rapid platelet responses in patients with immune thrombocytopenia and may be a useful alternative to plasma-derived products. This trial is registered at www.clinicaltrials.gov as #NCT00718692.
PLOS Pathogens | 2013
Wouter L. W. Hazenbos; Kimberly Kajihara; Richard Vandlen; J. Hiroshi Morisaki; Sophie M. Lehar; Mark J. Kwakkenbos; Tim Beaumont; Arjen Q. Bakker; Qui Phung; Lee R. Swem; Satish Ramakrishnan; Janice Kim; Min Xu; Ishita M. Shah; Binh An Diep; Tao Sai; Andrew Sebrell; Yana Khalfin; Angela Oh; Chris Koth; S. Jack Lin; Byoung-Chul Lee; Magnus Strandh; Klaus Koefoed; Peter S. Andersen; Hergen Spits; Eric J. Brown; Man-Wah Tan; Sanjeev Mariathasan
Infection of host tissues by Staphylococcus aureus and S. epidermidis requires an unusual family of staphylococcal adhesive proteins that contain long stretches of serine-aspartate dipeptide-repeats (SDR). The prototype member of this family is clumping factor A (ClfA), a key virulence factor that mediates adhesion to host tissues by binding to extracellular matrix proteins such as fibrinogen. However, the biological siginificance of the SDR-domain and its implication for pathogenesis remain poorly understood. Here, we identified two novel bacterial glycosyltransferases, SdgA and SdgB, which modify all SDR-proteins in these two bacterial species. Genetic and biochemical data demonstrated that these two glycosyltransferases directly bind and covalently link N-acetylglucosamine (GlcNAc) moieties to the SDR-domain in a step-wise manner, with SdgB appending the sugar residues proximal to the target Ser-Asp repeats, followed by additional modification by SdgA. GlcNAc-modification of SDR-proteins by SdgB creates an immunodominant epitope for highly opsonic human antibodies, which represent up to 1% of total human IgG. Deletion of these glycosyltransferases renders SDR-proteins vulnerable to proteolysis by human neutrophil-derived cathepsin G. Thus, SdgA and SdgB glycosylate staphylococcal SDR-proteins, which protects them against host proteolytic activity, and yet generates major eptopes for the human anti-staphylococcal antibody response, which may represent an ongoing competition between host and pathogen.
Journal of Molecular Biology | 2002
Eric J. Sundberg; Mark W. Sawicki; Scott Southwood; Peter S. Andersen; Alessandro Sette; Roy A. Mariuzza
While most immunotherapies for cancer have focused on eliciting specific CD8+ cytotoxic T lymphocyte killing of tumor cells, a mounting body of evidence suggests that stimulation of anti-tumor CD4+ T cell help may be required for highly effective therapy. Several MHC class II-restricted tumor antigens that specifically activate such CD4+ helper T lymphocytes have now been identified, including one from a melanoma tumor that is caused by a single base-pair mutation in the glycolytic enzyme triosephosphate isomerase. This mutation results in the conversion of a threonine residue to isoleucine within the antigenic epitope, concomitant with a greater than five log-fold increase in stimulation of a CD4+ tumor-infiltrating lymphocyte line. Here, we present the crystal structures of HLA-DR1 in complex with both wild-type and mutant TPI peptide antigens, the first structures of tumor peptide antigen/MHC class II complexes recognized by CD4+ T cells to be reported. These structures show that very minor changes in the binding surface for T cell receptor correspond to the dramatic differences in T cell stimulation. Defining the structural basis by which CD4+ T cell help is invoked in an anti-tumor immune response will likely aid the design of more effective cancer immunotherapies.
Structure | 2003
Eric J. Sundberg; Peter S. Andersen; Patrick M. Schlievert; Klaus Karjalainen; Roy A. Mariuzza
Due to a paucity of studies that synthesize structural, energetic, and functional analyses of a series of protein complexes representing distinct stages in an affinity maturation pathway, the biophysical basis for the molecular evolution of protein-protein interactions is poorly understood. Here, we combine crystal structures and binding-free energies of a series of variant superantigen (SAG)-major histocompatibility complex (MHC) class II complexes exhibiting increasingly higher affinity to reveal that this affinity maturation pathway is controlled largely by two biophysical factors: shape complementarity and buried hydrophobic surface. These factors, however, do not contribute equivalently to the affinity maturation of the interface, as the former dominates the early steps of the maturation process while the latter is responsible for improved binding in later steps. Functional assays reveal how affinity maturation of the SAG-MHC interface corresponds to T cell activation by SAGs.
Journal of Immunology | 2006
Josephine L. Klitgaard; Vincent W. Coljee; Peter S. Andersen; Lone Kjær Rasmussen; Lars Soegaard Nielsen; John S. Haurum; Søren Bregenholt
The immunogenicity of therapeutic Abs is a concern as anti-drug Abs may impact negatively on the pharmacodynamics and safety profile of Ab drugs. The factors governing induction of anti-drug Abs are not fully understood. In this study, we describe a model based on mouse-human chimeric Abs for the study of Ab immunogenicity in vivo. Six chimeric Abs containing human V regions and mouse C regions were generated from six human anti-Rhesus D Abs and the Ag-binding characteristics of the parental human Abs were retained. Analysis of the immune response toward the individual chimeric Abs revealed the induction of anti-variable domain Abs including anti-idiotypic Abs against some of these, thereby demonstrating the applicability of the model for studying anti-drug Ab responses in vivo. Immunization of BALB/c, C57, and outbred NMRI mice with a polyclonal composition consisting of all six chimeric Abs demonstrated that the immunogenicity of the individual Abs was haplotype dependent. Chimeric Abs, which were nonimmunogenic when administered individually, did not become immunogenic as part of the polyclonal composition, implying the absence of epitope spreading. Ex vivo Ab-binding studies established a clear correlation between the level of immunogenicity of the Abs comprised in the composition and the impact on the pharmacology of the Abs. These analyses demonstrate that under these conditions this polyclonal Ab composition was generally less susceptible to blocking Abs than the respective mAbs.
Journal of Immunology | 2003
Charlotte M. Bonefeld; Anette Rasmussen; Jens Peter H. Lauritsen; Marina Rode von Essen; Niels Ødum; Peter S. Andersen; Carsten Geisler
One of the earliest events following TCR triggering is TCR down-regulation. However, the mechanisms behind TCR down-regulation are still not fully known. Some studies have suggested that only directly triggered TCR are internalized, whereas others studies have indicated that, in addition to triggered receptors, nonengaged TCR are also internalized (comodulated). In this study, we used transfected T cells expressing two different TCR to analyze whether comodulation took place. We show that TCR triggering by anti-TCR mAb and peptide-MHC complexes clearly induced internalization of nonengaged TCR. By using a panel of mAb against the Tiβ chain, we demonstrate that the comodulation kinetics depended on the affinity of the ligand. Thus, high-affinity mAb (KD = 2.3 nM) induced a rapid but reversible comodulation, whereas low-affinity mAb (KD = 6200 nM) induced a slower but more permanent type of comodulation. Like internalization of engaged TCR, comodulation was dependent on protein tyrosine kinase activity. Finally, we found that in contrast to internalization of engaged TCR, comodulation was highly dependent on protein kinase C activity and the CD3γ di-leucine-based motif. Based on these observations, a physiological role of comodulation is proposed and the plausibility of the TCR serial triggering model is discussed.