Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter S. Meyer is active.

Publication


Featured researches published by Peter S. Meyer.


Earth and Planetary Science Letters | 2000

A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge

Henry J. B. Dick; James H. Natland; Jeffrey C. Alt; Wolfgang Bach; Daniel Bideau; Jeffrey S. Gee; Sarah Haggas; Jan Gh Hertogen; Greg Hirth; Paul Martin Holm; Benoit Ildefonse; Gerardo J. Iturrino; Barbara E. John; Deborah S. Kelley; E. Kikawa; Andrew Kingdon; Petrus J. Leroux; Jinichiro Maeda; Peter S. Meyer; D. Jay Miller; H. Richard Naslund; Yaoling Niu; Paul T. Robinson; J. E. Snow; Ralph A. Stephen; Patrick W. Trimby; Horst Ulrich Wörm; Aaron Yoshinobu

Ocean Drilling Program Leg 176 deepened Hole 735B in gabbroic lower ocean crust by 1 km to 1.5 km. The section has the physical properties of seismic layer 3, and a total magnetization sufficient by itself to account for the overlying lineated sea-surface magnetic anomaly. The rocks from Hole 735B are principally olivine gabbro, with evidence for two principal and many secondary intrusive events. There are innumerable late small ferrogabbro intrusions, often associated with shear zones that cross-cut the olivine gabbros. The ferrogabbros dramatically increase upward in the section. Whereas there are many small patches of ferrogabbro representing late iron- and titanium-rich melt trapped intragranularly in olivine gabbro, most late melt was redistributed prior to complete solidification by compaction and deformation. This, rather than in situ upward differentiation of a large magma body, produced the principal igneous stratigraphy. The computed bulk composition of the hole is too evolved to mass balance mid-ocean ridge basalt back to a primary magma, and there must be a significant mass of missing primitive cumulates. These could lie either below the hole or out of the section. Possibly the gabbros were emplaced by along-axis intrusion of moderately differentiated melts into the near-transform environment. Alteration occurred in three stages. High-temperature granulite- to amphibolite-facies alteration is most important, coinciding with brittle^ductile deformation beneath the ridge. Minor greenschist-facies alteration occurred under largely static conditions, likely during block uplift at the ridge transform intersection. Late post-uplift low-temperature alteration produced locally abundant smectite, often in previously unaltered areas. The most important features of the high- and low-temperature alteration are their respective


Geochimica et Cosmochimica Acta | 1999

The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros

Stanley R. Hart; Jerzy S. Blusztajn; Henry J. B. Dick; Peter S. Meyer; Karlis Muehlenbachs

A novel strip-sampling technique has been applied to the 500-m gabbroic section drilled at site 735 during Leg 118. Twenty-two continuous strips of 1.1- to 4.5-m length were cut longitudinally from the core, allowing for a more representative sampling of this section of the deep ocean crust. A full suite of trace element and isotopic (Sr, Nd, Pb, Os, δ18O) analyses were conducted on these strip samples; for comparison, analyses were conducted on a small suite of protolith samples, selected for their fresh and unaltered appearance. Amphibole, diopside, and plagioclase from 18 vein samples were also analyzed for Sr and Nd isotopes. Although the evidence for a seawater component in these gabbros is clear (87/86 Sr up to 0.70316; 206/204 Pb up to 19.3; δ18O down to 2.0‰; 187/188 Os up to 0.44), the trace element signatures are dominated by magmatic effects (infiltration and impregnation by late-stage melts derived locally or from deeper levels of the crust). The average upper 500 m 735B gabbro section is somewhat lower than average N-MORB in trace elements such as Ba (30%), Nb (50%), U (40%), and heavy REE (Yb and Lu, 30%), but somewhat enriched in others such as La (23%), Ce (24%), Pb (23%), and Sr (40%). Although the section is largely comprised of cumulate gabbros (Natland et al., 1991), and many of the strip samples show marked Sr and Eu anomalies (plagioclase cumulation), the average composition of the total 500 m section shows no Sr or Eu anomalies (<1%). This implies that there has been local separation of melt and solids, but no large scale removal of melts from this 500-m gabbro section.


Earth and Planetary Science Letters | 1985

Helium isotopic systematics within the neovolcanic zones of Iceland

Mark D. Kurz; Peter S. Meyer; Haraldur Sigurdsson

Helium isotopic compositions have been measured in a suite of sub-glacial basaltic glasses from the neovolcanic zones of Iceland. The 3He/4He ratios vary between 8 and 26.2× atmospheric; the higher ratios are generally consistent with a relatively primitive undegassed mantle source for the helium. Several sampling tests indicate that sub-glacial basaltic glasses retain a representative sample of magmatic helium, much like mid-ocean ridge basalts. The overall variations, high observed helium concentrations (up to 1.6×10−6 cm3 STP/g), and young age of Icelandic crust argue strongly against crustal contamination as a primary control of helium isotopes in the basaltic lavas. Each volcanic zone has a distinctive basaltic 3He/4He isotopic signature: 18–26.2× atmospheric in the eastern volcanic zone and central Iceland, 12–16× atmospheric in the western volcanic zone, and 8–11 in the northeastern volcanic zone. The limited range of 3He/4He ratios within each zone, variability between volcanic zones in 3He/4He, and temporal aspects of Icelandic volcanism are interpreted within the framework of a plume model for the mantle beneath Iceland. The preferred model involves variable contributions from a plume source (i.e. undegassed) to each of the Icelandic volcanic zones. The fact that the highest 3He/4He ratios are observed in eastern and central Iceland suggests that volcanism in these areas has the greatest contribution from the plume.


Contributions to Mineralogy and Petrology | 1989

Cumulate gabbros from the Southwest Indian Ridge, 54S-7 16? E: implications for magmatic processes at a slow spreading ridge

Peter S. Meyer; Henry J. B. Dick; Geoffrey Thompson

A diverse volcanic and plutonic rock suite was recovered from the center of the 80 km long ridge segment of the Southwest Indian Ridge (54°S, 7°16′ E) between the Islas Orcadas and Shaka Fracture Zones. The cumulus nature of the gabbroic rocks in the suite is indicated by phase, modal and cryptic layering, igneous lamination, and low incompatible element abundances. We present a mass-balance model for calculating the proportions and compositions of cumulus phases and crystallized intercumulus liquid from bulk-rock major element compositions. The model is based on the ability to define a compositional array of basaltic liquids and on the assumption that cumulus minerals are initially in equilibrium with trapped liquid. Calculated proportions of trapped liquid range from 3%–15%; values that are characteristic of adcumulates to mesocumulates. Models of postcumulus crystallization indicate significant enrichments of incompatible elements and buffering of compatible elements in residual trapped liquids, thus explaining the high TiO2 contents observed in magnesian clinopyroxenes. Cumulus phase assemblages and compositions suggest solidification in shallow level magma chambers, but disequilibrium plagioclase compositions suggest some crystallization at greater depth. Furthermore, basalt compositions projected onto the olivine-clinopyroxenequartz pseudoternary suggest magma generation over a range of pressures (from less than 10 to greater than 20 kb) as well as polybaric fractional crystallization. We suggest that the Southwest Indian Ridge is characterized by low magma supply with small batches of melt that either ascend directly to the surface having undergone limited polybaric crystallization or are trapped in shallow crustal magma chambers where they evolve and solidify to form cumulate gabbros. The adcumulus nature of the gabbros investigated here suggests slow cooling rates typical of large intrusions implying relatively large, but ephemeral magma chambers below segments of the Southwest Indian Ridge.


Contributions to Mineralogy and Petrology | 1991

The 1783 Lakagigar eruption in Iceland: geochemistry, CO2 and sulfur degassing

Nicole Métrich; Haraldur Sigurdsson; Peter S. Meyer; Joseph D. Devine

About 12.3 km3 of basaltic magma were erupted from the Lakagigar fissure in Iceland in 1783, which may have been derived from the high-level reservoir of Grimsvotn central volcano, by lateral flow within the rifted crust. We have studied the petrology of quenched, glassy tephra from sections through pyroclastic cones along the fissure. The chemical composition of matrix glass of the 1783 tephra is heterogeneous and ranges from olivine tholeiite to Fe−Ti rich basalt, but the most common magma erupted is quartz tholeiite (Mg#43.6 to 37.2). The tephra are characterized by low crystal content (5 to 9 vol%). Glass inclusions trapped in plagioclase and Fo86 to Fo75 olivine phenocrysts show a large range of compositions, from primitive olivine tholeiite (Mg#64.3), quartz tholeiite (Mg#43–37), to Fe−Ti basalts (Mg#33.5) which represent the most differentiated liquids and are trapped as rare melt inclusions in clinopyroxene. Both matrix glass and melt inclusion data indicate a chemically heterogeneous magma reservoir, with quartz tholeiite dominant. LREE-depleted olivine-tholeiite melt-inclusions in Mg-rich olivine and anorthitic-plagioclase phenocrysts may represent primitive magma batches ascending into the reservoir at the time of the eruption. Vesicularity of matrix glasses correlates with differentiation, ranging from 10 to 60 vol.% in evolved quartz-tholeiite glasses, whereas olivine-tholeiite glasses contain less than 10 vol.% vesicles. FTIR analyses of olivine-tholeiite melt-inclusions indicate concentrations of 0.47 wt% H2O and 430 to 510 ppm for CO2. Chlorine in glass inclusions and matrix glasses increases from 50 ppm in primitive tholeiite to 230 ppm in Fe−Ti basalts, without clear evidence of degassing. Melt inclusion analyses show that sulfur varies from 915 ppm to 1970 ppm, as total FeO* increases from 9 to 13.5 wt%. Sulfur degassing correlates both with vesicularity and magma composition. Thus sulfur in matrix glasses decreases from 1490 ppm to 500 ppm, as Mg # decreases from 47 to 37 and vesicularity of the magma strongly increases. These results indicate loss of at least 75% of sulfur during the eruption. The correlation of low sulfur content in matrix glasses with high vesicularity is regarded as evidence of the control of a major exsolving volatile phase on the degassing efficiency of the magma. Our model is consistent a quasi-permanent CO2 flux through the shallow-level magmatic reservoir of Grimsvotn. Following magma withdrawal from the reservoir and during eruption from the Lakagigar fissure, sulfur degassing was controlled by inherent CO2-induced vesicularity of the magma.


Bulletin of Volcanology | 1992

Evolution of Icelandic central volcanoes: evidence from the Austurhorn intrusion, southeastern Iceland

Tanya Furman; Peter S. Meyer; Fred A. Frey

The Austurhorn intrusive complex in southeastern Iceland represents an exhumed Tertiary central volcano. The geometry of the intrusion and geochemistry of the mafic and felsic rocks indicate Austurhorn was a volcanic center analogous to Eyjafjallajökull and Torfajökull in Icelands eastern neovolcanic zone (EVZ). Early transitional tholeiitic basalt magmatism at Austurhorn formed a shallow crustal chamber ∼5 km in diameter. Apparent rhythmic modal layering of, and intrusive contacts within, the gabbro indicate the mafic chamber was replenished frequently as it cooled and crystallized. Felsic activity postdated near-solidification of the gabbro; numerous granitic magmas intruded along gabbro margins and within the adjacent crust. Field relations indicate that infrequent felsic replenishment prevented convective mixing of the Austurhorn chamber during this time, although commingled mafic and felsic magmas are observed in an extensive net veined complex. Late stage mafic dikes intrude the entire complex, suggesting that magmatic heat was abundantly available throughout the evolution of the Austurhorn system. Plagioclase and clinopyroxene compositions in mafic through felsic rocks, including gabbros, support a model of progressive differentiation. Field relations constrain the felsic magmas to originate at P≥1 kbar, presumably by fractional crystallization. The structure and geochemistry of the Austurhorn intrusive complex suggest formation in an immature rift environment similar to the modern EVZ. The proposed rift segment was parallel to the western and eastern neovolcanic zones, and probably resulted from a reorganization of plate boundaries ∼7 Ma (Saemundsson 1979; Helgason 1985; Jancin et al. 1985) triggered by activity of the Iceland mantle plume.


Special Paper of the Geological Society of America | 2000

Lower oceanic crust formed at an ultra-slow-spreading ridge: Ocean Drilling Program Hole 735B, Southwest Indian Ridge

Paul T. Robinson; Henry J. B. Dick; James H. Natland; Jeffrey C. Alt; Wolfgang Bach; Daniel Bideau; Jeffrey S. Gee; S. Haggis; Jan Gh Hertogen; Greg Hirth; Paul Martin Holm; Benoit Ildefonse; Gerardo J. Iturrino; Barbara E. John; Deborah S. Kelley; E. Kikawa; Andrew Kingdon; Petrus J. Leroux; Jinichiro Maeda; Peter S. Meyer; D. J. Miller; H. R. Naslund; Yaoling Niu; J. E. Snow; Ralph A. Stephen; Patrick W. Trimby; Horst Ulrich Wörm; Aaron Yoshinobu

Ocean Drilling Program ODP Hole 735B, drilled on Legs 118 and 176, 1508 m of oceanic layer 3 on a transverse ridge adjacent to the Atlantis II Fracture Zone, Southwest Indian Ridge. The cored sequence consists predominantly or olivine gabbro and troctolite and lesser amounts of gabbro, and gabbronorite rich in oxides. The section contains live major blocks of relatively primitive olivine gabbro and troctolite, composed of many smaller igneous bodies. Each Of these composite blocks shows a small upward decrease in Mg# [defined as 100 x Mg/(Mg + Fe 2+)] and contains more fractionated Fe- and Ti-rich gabbros near the top.Small, crosscutting bodies of olivine gabbro and troctolite with diffuse boundaries may represent conduits through crystal mushes for melts migrating upward and feeding individual intrusions. Oxide gabbros and gabbronorites are commonly associated with shear zones of intense deformation, which crosscut the section at all levels, However, oxide-rich rocks decrease in abundance downward and are nearly absent in the lower 500 m of the section. The gabbros and gabbronorites appear to have formed from late-stage, Fe- and Ti-rich, intercumulus melts that were expelled out of fractionating olivine gabbros into the shear zones. The fabrics of the recovered gabbros are consistent with synkinematic cooling and extension of the crustal section in a mid-ocean ridge environment. However, thick intervals of the core have only a weak magmatic foliation. The magmatic foliation is commonly overprinted by a weak, parallel, deformational fabric probably reflecting the transition from a largely magmatic to a largely crystalline state. Deformation in this crustal section decreases markedly downward. Metamorphism and alteration also decrease downward, and much of the core has less than 5% background alteration. Major zones of crystal-plastic (ductile by dislocated creep) deformation in the upper part of the core probably formed under conditions equivalent to granulite-facies conditions when there was little or no melt present. Late-magmatic and hydrothermal fluids produced a variety of plagioclase, amphibole, and diopside veins. Late-stage, low-temperature veins of calcite, smectite, zeolite, prehnite are present in a few intervals. The fact that the cored is unlike ophiolite as defined by the Penrose Conference Participants suggests that no ophiolite representing an ultra-slow-spreading-ridge environment like the Southwest Indian Ridge may be preserved.


Archive | 1991

Lithostratigraphic evolution of an in-situ section of oceanic layer 3

Henry J. B. Dick; Peter S. Meyer; Sherman H Bloomer; Stephen Kirby; Debra S Stakes; Christopher Mawer


Archive | 1991

Tectonic Evolution of the Atlantis II Fracture Zone

Henry J. B. Dick; Hans Schouten; Peter S. Meyer; D.G. Gallo; H. Bergh; R. Tyce; P. Patriat; Kevin T. M. Johnson; J. E. Snow; Andrew T. Fisher


Journal of Geophysical Research | 1985

Petrological and geochemical variations along Iceland's Neovolcanic Zones

Peter S. Meyer; Haraldur Sigurdsson; Jean-Guy Schilling

Collaboration


Dive into the Peter S. Meyer's collaboration.

Top Co-Authors

Avatar

Henry J. B. Dick

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey S. Gee

University of California

View shared research outputs
Top Co-Authors

Avatar

Ralph A. Stephen

Woods Hole Oceanographic Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge