Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter S. Vroom is active.

Publication


Featured researches published by Peter S. Vroom.


Pacific Science | 2004

A Rapid Ecological Assessment (REA) Quantitative Survey Method for Benthic Algae Using Photoquadrats with Scuba

Linda B. Preskitt; Peter S. Vroom; Celia M. Smith

The challenge of assessing seldom-visited, benthic substrates has created the need for a method to describe benthic communities quickly and ef- ficiently. Macroscale rapid ecological assessments (REAs) of algal assemblages provide managers of coral reefs and other benthic ecosystems with the fundamental descriptive data necessary for continued yearly monitoring studies. The high cost of monitoring marine communities, especially remote sites, coupled with the time limitations imposed by scuba, require that statistically valid data be collected as quickly as possible. A photoquadrat method using a digital camera, computer software for photographic analysis, and minimal data collection in the field was compared with the conventional method of point-intersect (grid) quadrats in estimating percentage cover in subtidal benthic communities. In timed studies, photoquadrats yielded twice the number of quadrats (and an almost infinite number of data points) as conventional methods, provided permanent historical records of each site, and minimized observer bias by having only one observer identifying algae in the field. However, photoquadrats required more post-collection computer analyses of digital photographs than conventional methods. In the manual method, observer bias in algal identification can occur depending on the degree of experience of individual divers. On the other hand, photoquadrats rely on one observer in the field and one observer in the laboratory, standardizing algal identification. Overall, photoquadrats do not yield the finer resolution in diversity that was found using point-intersect quadrats but do provide a more precise estimate of percentage cover of the abundant species, as well as establishing a permanent visual record in the time allowed by work with other teams.


PLOS ONE | 2010

An Overview of Marine Biodiversity in United States Waters

Daphne G. Fautin; Penelope Dalton; Lewis S. Incze; Jo-Ann C. Leong; Clarence Pautzke; Andrew A. Rosenberg; Paul A. Sandifer; George R. Sedberry; John W. Tunnell; Isabella A. Abbott; Russell E. Brainard; Melissa Brodeur; Lucius G. Eldredge; Michael Feldman; Fabio Moretzsohn; Peter S. Vroom; Michelle Wainstein; Nicholas H. Wolff

Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.


Proceedings of the Royal Society B: Biological Sciences | 2016

Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific.

Jennifer E. Smith; Rusty Brainard; Amanda L. Carter; Saray Grillo; Clinton Edwards; Jill Harris; Levi S. Lewis; David Obura; Forest Rohwer; Enric Sala; Peter S. Vroom; Stuart A. Sandin

Numerous studies have documented declines in the abundance of reef-building corals over the last several decades and in some but not all cases, phase shifts to dominance by macroalgae have occurred. These assessments, however, often ignore the remainder of the benthos and thus provide limited information on the present-day structure and function of coral reef communities. Here, using an unprecedentedly large dataset collected within the last 10 years across 56 islands spanning five archipelagos in the central Pacific, we examine how benthic reef communities differ in the presence and absence of human populations. Using islands as replicates, we examine whether benthic community structure is associated with human habitation within and among archipelagos and across latitude. While there was no evidence for coral to macroalgal phase shifts across our dataset we did find that the majority of reefs on inhabited islands were dominated by fleshy non-reef-building organisms (turf algae, fleshy macroalgae and non-calcifying invertebrates). By contrast, benthic communities from uninhabited islands were more variable but in general supported more calcifiers and active reef builders (stony corals and crustose coralline algae). Our results suggest that cumulative human impacts across the central Pacific may be causing a reduction in the abundance of reef builders resulting in island scale phase shifts to dominance by fleshy organisms.


Hydrobiologia | 2003

Field biology of Halimeda tuna (Bryopsidales, Chlorophyta) across a depth gradient: comparative growth, survivorship, recruitment, and reproduction

Peter S. Vroom; Celia M. Smith; James A. Coyer; Linda J. Walters; Cynthia L. Hunter; Kevin S. Beach; Jennifer E. Smith

Growth, survivorship, recruitment, and reproduction of Halimeda tuna, a dominant green alga in many reef systems of the Florida Keys, were monitored at a shallow back reef (4–7m) and deep reef slope (15–22 m) on Conch Reef. Despite lower light intensities and similar grazing pressures, amphipod infestations, and epiphyte loads at both sites, the deeper site exhibited significantly higher growth rates in summer months over a 4-year period than found for the shallow population, possibly because of higher nutrient levels at depth and photoinhibition of shallow plants. Sexual reproductive events occurred simultaneously across the entire reef, with up to 5% of the population at both sites developing gametangia. New upright axes formed from zygotes, asexual fragmentation, or vegetative runners. Plants appear to have persistent basal stumps that survive harsh environmental conditions, even if upright, photosynthetic axes are removed. Sexual reproduction and ‘smothering’ by epiphyte overgrowth are hypothesized to be two causes of death for individuals.


PLOS ONE | 2010

Benthic Composition of a Healthy Subtropical Reef: Baseline Species-Level Cover, with an Emphasis on Algae, in the Northwestern Hawaiian Islands

Peter S. Vroom; Cristi L. Braun

The Northwestern Hawaiian Islands (NWHI) are considered to be among the most pristine coral reef ecosystems remaining on the planet. These reefs naturally contain a high percent cover of algal functional groups with relatively low coral abundance and exhibit thriving fish communities dominated by top predators. Despite their highly protected status, these reefs are at risk from both direct and indirect anthropogenic sources. This study provides the first comprehensive data on percent coverage of algae, coral, and non-coral invertebrates at the species level, and investigates spatial diversity patterns across the archipelago to document benthic communities before further environmental changes occur in response to global warming and ocean acidification. Monitoring studies show that non-calcified macroalgae cover a greater percentage of substrate than corals on many high latitude reef sites. Forereef habitats in atoll systems often contain high abundances of the green macroalga Microdictyon setchellianum and the brown macroalga Lobophora variegata, yet these organisms were uncommon in forereefs of non-atoll systems. Species of the brown macroalgal genera Padina, Sargassum, and Stypopodium and the red macroalgal genus Laurencia became increasingly common in the two northernmost atolls of the island chain but were uncommon components of more southerly islands. Conversely, the scleractinian coral Porites lobata was common on forereefs at southern islands but less common at northern islands. Currently accepted paradigms of what constitutes a “healthy” reef may not apply to the subtropical NWHI, and metrics used to gauge reef health (e.g., high coral cover) need to be reevaluated.


Journal of Marine Biology | 2011

“Coral Dominance”: A Dangerous Ecosystem Misnomer?

Peter S. Vroom

Over 100 years ago, before threats such as global climate change and ocean acidification were issues engrossing marine scientists, numerous tropical reef biologists began expressing concern that too much emphasis was being placed on coral dominance in reef systems. These researchers believed that the scientific community was beginning to lose sight of the overall mix of calcifying organisms necessary for the healthy function of reef ecosystems and demonstrated that some reefs were naturally coral dominated with corals being the main organisms responsible for reef accretion, yet other healthy reef ecosystems were found to rely almost entirely on calcified algae and foraminifera for calcium carbonate accumulation. Despite these historical cautionary messages, many agencies today have inherited a coral-centric approach to reef management, likely to the detriment of reef ecosystems worldwide. For example, recent research has shown that crustose coralline algae, a group of plants essential for building and cementing reef systems, are in greater danger of exhibiting decreased calcification rates and increased solubility than corals in warmer and more acidic ocean environments. A shift from coral-centric views to broader ecosystem views is imperative in order to protect endangered reef systems worldwide.


Pacific Science | 2006

Community Structure of Hermatypic Corals at French Frigate Shoals,Northwestern Hawaiian Islands: Capacity for Resistance and Resilience to Selective Stressors.

Jean C. Kenyon; Peter S. Vroom; Kimberly N. Page; Matthew J. Dunlap; Casey B. Wilkinson; Greta S. Aeby

ABSTRACT Georeferenced towed-diver surveys covering more than 100,000 m2 of benthic habitat and site-specific surveys at 30 sites during 2000–2002 determined distribution and abundance of scleractinian corals at French Frigate Shoals (FFS), Northwestern Hawaiian Islands. Percentage cover of corals was quantified by genus or species in forereef, backreef, and lagoon habitats and at La Perouse Pinnacles using three complementary methods: towed-diver surveys, video transects, and photoquadrats. Habitat-specific colony density and size-class distributions from measurements made within belt transects at fixed sites indicated that three coral genera, Porites, Pocillopora, and Acropora, accounted for more than 93% of total coral cover throughout the atoll, and their relative percentage cover, densities, and size distributions varied according to habitat and geographic location within the atoll. These descriptive data, which provide the most comprehensive overview yet of the scleractinian coral community at FFS, were used to assess the coral reefs’ potential for resistance and resilience to selective stressors including bleaching, disease, and Acanthaster outbreaks. They also serve as a baseline for an ecosystem-based, long-term monitoring program with an objective of linking coral community change to other biological and physical factors.


Marine Pollution Bulletin | 2014

Coral reef baselines: How much macroalgae is natural?

John F. Bruno; William F. Precht; Peter S. Vroom; Richard B. Aronson

Identifying the baseline or natural state of an ecosystem is a critical step in effective conservation and restoration. Like most marine ecosystems, coral reefs are being degraded by human activities: corals and fish have declined in abundance and seaweeds, or macroalgae, have become more prevalent. The challenge for resource managers is to reverse these trends, but by how much? Based on surveys of Caribbean reefs in the 1970s, some reef scientists believe that the average cover of seaweed was very low in the natural state: perhaps less than 3%. On the other hand, evidence from remote Pacific reefs, ecological theory, and impacts of over-harvesting in other systems all suggest that, historically, macroalgal biomass may have been higher than assumed. Uncertainties about the natural state of coral reefs illustrate the difficulty of determining the baseline condition of even well studied systems.


European Journal of Phycology | 2006

Phylogeny and taxonomy of Halimeda incrassata , including descriptions of H. kanaloana and H. heteromorpha spp. nov. (Bryopsidales, Chlorophyta)

Heroen Verbruggen; Olivier De Clerck; Antoine D.R. N'yeurt; Heather L. Spalding; Peter S. Vroom

The tropical green algal genus Halimeda is one of the best studied examples of pseudo-cryptic diversity within the algae. Previous molecular and morphometric studies revealed that within Halimeda section Rhipsalis, Halimeda incrassata included three pseudo-cryptic entities and that the morphological boundaries between H. incrassata and Halimeda melanesica were ill-defined. In this paper, the taxonomy of H. incrassata is revised: two pseudo-cryptic entities are described as new species, Halimeda kanaloana and Halimed heteromorpha, while H. incrassata is redefined to encompass a single, monophyletic entity. Similarities and differences between the three species and H. melanesica are discussed. Monophyly of H. heteromorpha, which was questioned in a former study, is reinvestigated using sets of 32 ITS1–ITS2 and 21 plastid rps3 sequences and various alignment and inference methods. The phylogenetic relationships within Halimeda section Rhipsalis are inferred from nuclear 18S–ITS1–5.8S–ITS2 and concatenated plastid sequences (tufA & rpl5–rps8–infA) and interpreted in a biogeographic context.


Journal of Phycology | 2009

SPATIAL AND TEMPORAL COMPARISON OF ALGAL BIODIVERSITY AND BENTHIC COVER AT GARDNER PINNACLES, NORTHWESTERN HAWAI`IAN ISLANDS

Peter S. Vroom; Molly Timmers

Papahānaumokuākea Marine National Monument in the Northwestern Hawai`ian Islands is the second largest marine protected area in the world, providing an opportunity for scientists to understand natural ecosystem fluctuations in subtropical marine communities with little anthropogenic impact. Gardner Pinnacles is composed of two emergent basaltic rocks and has the smallest land area of any island in the Northwestern Hawai`ian Island chain but has among the largest submerged reef area. Gardner Pinnacles is also among the least anthropogenically impacted island in the Hawai`ian Archipelago, although a thriving lobster and bottomfish industry existed in the area for many years. This study assesses nearshore algal biodiversity and percent cover at Gardner Pinnacles to examine interannual differences in community dynamics and places them in an ecosystem context by also examining associated invertebrate and fish communities. Biodiversity surveys increased the number of known eukaryotic algal species occurring in marine environments immediately adjacent to the emergent portion of Gardner Pinnacles from 31 to 77. Algal percent cover, specifically populations of the green alga Microdictyon setchellianum M. Howe, varied dramatically between sampling years, possibly in response to seasonal differences. Towed‐diver surveys revealed that macroalgae covered >90% of the substrate during the 2003 sampling period but returned to 2000 levels (1%–35% cover) by 2004 without any detectable damage to other reef organisms. Fish communities remained statistically similar between sampling years, and percent cover of live coral around the island did not exceed 7%.

Collaboration


Dive into the Peter S. Vroom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell E. Brainard

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Jean C. Kenyon

Joint Institute for Marine and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. Maragos

United States Fish and Wildlife Service

View shared research outputs
Top Co-Authors

Avatar

Molly A. Timmers

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Ronald Hoeke

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge