Peter Sjövall
Chalmers University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Sjövall.
Biomass & Bioenergy | 2003
Linda Johansson; Claes Tullin; Bo G Leckner; Peter Sjövall
Literature data on particle emissions are compared with emissions from combustion of wood pellets and wood briquettes in commercial small-scale combustion devices: a pellet stove, two pellet burners and two smaller district heating boilers. The influence of operating parameters and fuel quality was investigated. Mass concentration, number concentration and number size distribution of particles were determined. The mass size distribution was analysed as well as the inorganic components. Gaseous compounds were recorded to give information about the combustion conditions. The mass concentrations of particles were between 34 and , increasing during unsatisfactory operation conditions. The number concentration was in the range of 107–108 particles per Ncm−3. The particle emission was dominated by submicron particles (size ), both from number and mass perspective. The main inorganic components of the submicron particles were potassium, sulphur, chlorine and oxygen. Small amounts of sodium, magnesium and zinc were also found. The contents of potassium, chlorine, and sulphur in the fuel are important for the composition of the emitted inorganic submicron particles.
Analytical Chemistry | 2009
Ann-Charlotte Almstrand; Evert Ljungström; Jukka Lausmaa; Björn Bake; Peter Sjövall; Anna-Carin Olin
We describe a new method for simultaneously collecting particles in exhaled air for subsequent chemical analysis and measuring their size distribution. After forced exhalation, particles were counted and collected in spots on silicon wafers with a cascade impactor. Several phospholipids were identified by time-of-flight secondary ion mass spectrometric analysis of the collected spots, suggesting that the particles originated from the lower airways. The amount of particles collected in ten exhalations was sufficient for characterizing the phospholipid composition. The feasibility of the technique in respiratory research is demonstrated by analysis of the phospholipid composition of exhaled particles from healthy controls, patients with asthma, and patients with cystic fibrosis. We believe this technology will be useful for monitoring patients with respiratory disease and has a high potential to detect new biomarkers in exhaled air.
Analytical Chemistry | 2009
Jakob Malm; Dimitrios Giannaras; Mathis O. Riehle; Nikolaj Gadegaard; Peter Sjövall
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a promising tool for subcellular chemical analysis of biological cells. However, to obtain relevant information, the method used for sample preparation is critical. In this work, we have used TOF-SIMS, scanning electron microscopy (SEM), and interference reflection microscopy (IRM) to study the effects of different fixation and drying methods on the morphology and chemical structure of human fibroblast cells (hTERT) adhered to a silicon surface. Specifically, two fixation techniques (chemical fixation with glutaraldehyde and cryofixation by plunge freezing) and two drying techniques (freeze drying and alcohol substitution drying) were investigated. Cryofixation followed by freeze drying was determined to produce dried cells with preserved cell morphology, intact cell membranes, and retained sodium/potassium ion concentration gradients across the plasma membrane. By washing samples in an aqueous solution of ammonium formate (AF) before cryofixation, the accumulation of salts on the sample surface during drying could be suppressed. IRM measurements showed that the cell morphology was preserved during washing with ammonium formate, although some swelling occurred. Compared with cryofixation, cells fixed with glutaraldehyde showed finer structures on the cell surface in SEM and similar lipid distributions in TOF-SIMS, but the sodium/potassium ion gradients were not retained. Alcohol drying was determined to remove cell membrane phospholipids significantly, although the use of osmium tetroxide as a post-fixative was shown to decrease this effect.
European Respiratory Journal | 2012
Ann-Charlotte Almstrand; Mats Josefson; Anna Bredberg; Jukka Lausmaa; Peter Sjövall; Per Larsson; Anna-Carin Olin
Particles in exhaled air (PEx) may reflect the composition of respiratory tract lining fluid (RTLF); thus, there is a need to assess their potential as sources of biomarkers for respiratory diseases. In the present study, we compared PEx from patients with asthma and controls using time-of-flight–secondary ion mass spectrometry (TOF-SIMS) and multivariate analysis. Particles were collected using an instrument developed in-house. 15 nonsmoking subjects with physician-diagnosed asthma and 11 nonsmoking healthy controls performed 10 consecutive forced exhalations into the instrument. Particle concentrations were recorded and samples of particles collected on silicon plates were analysed by TOF-SIMS. Subjects with asthma exhaled significantly lower numbers of particles than controls (p=0.03) and the ratio of unsaturated to saturated phospholipids was significantly lower in samples from subjects with asthma (0.25 versus 0.35; p=0.036). Orthogonal partial least squares-discriminant analysis models showed good separation between both positive and negative spectra. Molecular ions from phosphatidylcholine and phosphatidylglycerol, and protein fragments were found to discriminate the groups. We conclude that analysis of PEx is a promising method to examine the composition of RTLF. In the present explorative study, we could discriminate between subjects with asthma and healthy controls based on TOF-SIMS spectra from PEx.
Analytical Chemistry | 2010
Ingela Lanekoff; Michael E. Kurczy; Rowland Hill; John S. Fletcher; John C. Vickerman; Nicholas Winograd; Peter Sjövall; Andrew G. Ewing
An in situ freeze fracture device featuring a spring-loaded trap system has been designed and characterized for time of flight secondary ion mass spectrometry (TOF SIMS) analysis of single cells. The device employs the sandwich assembly, which is typically used in freeze fracture TOF SIMS experiments to prepare frozen, hydrated cells for high-resolution SIMS imaging. The addition of the spring-loaded trap system to the sandwich assembly offers two advances to this sample preparation method. First, mechanizing the fracture by adding a spring standardizes each fracture by removing the need to manually remove the top of the sandwich assembly with a cryogenically cooled knife. A second advance is brought about because the top of the sandwich is not discarded after the sandwich assembly has been fractured. This results in two imaging surfaces effectively doubling the sample size and providing the unique ability to image both sections of a cell bifurcated by the fracture. Here, we report TOF SIMS analysis of freeze fractured rat pheochromocytoma (PC12) cells using a Bi cluster ion source. This work exhibits the ability to obtain single cell chemical images with subcellular lateral resolution from cells preserved in an ice matrix. In addition to preserving the cells, the signal from lipid fragment ions rarely identified in single cells are better observed in the freeze-fractured samples for these experiments. Furthermore, using the accepted argument that K(+) signal indicates a cell that has been fractured though the cytoplasm, we have also identified different fracture planes of cells over the surface. Coupling a mechanized freeze fracture device to high-resolution cluster SIMS imaging will provide the sensitivity and resolution as well as the number of trials required to carry out biologically relevant SIMS experiments.
Journal of the American Chemical Society | 2009
Angelika Kunze; Peter Sjövall; Bengt Kasemo; Sofia Svedhem
The study of lipid transfer between lipid membranes is of great interest for the fundamental understanding of this complex and important process and, furthermore, for providing a new avenue for the in situ modification of supported lipid bilayers (SLBs). SLBs are conveniently formed by vesicle spreading onto a solid support, but this method is limited to conditions (i.e., combination of vesicle lipid composition, surface chemical properties, and buffer) such that the vesicles break spontaneously upon adsorption to the surface. Many SLB compositions are not accessible by this approach. In the present study, we give an example of how lipid transfer can be made use of to form lipid layers with striking new features, notably with respect to stability. After lipid transfer between negatively charged POPS small unilamellar vesicles and a positively charged POEPC SLB on TiO2, an SLB is obtained, which, upon exposure to SDS, leaves behind a lipid monolayer. It is shown how this monolayer can be used for creating new SLBs. The several step procedure, bilayer formation, lipid transfer, removal of a lipid monolayer and the reassembly of a bilayer, is monitored in real time by the quartz crystal microbalance with a dissipation (QCM-D) technique, and the lipid composition is analyzed for each step in postpreparation spectroscopic analyses using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Comparison of the measured signal ratios with those of the reference samples containing known fractions of D31-POPS directly shows that the relative concentration of D31-POPS is approximately 50% in the SLB after D31-POPS exchange, significantly higher in the monolayer prepared in situ by SDS rinse, and approximately 20-25% after reassembly of the SLB using POEPC vesicles. The results thus provide unambiguous evidence for extensive lipid transfer between the initial POEPC SLB and D31-POPS vesicles in solution. We suggest that the reassembled SLB has a significant asymmetry between the two leaflets, and we propose that the described method is promising for the in situ preparation of asymmetric SLBs.
Nature Communications | 2015
Henrik Drake; Mats E. Åström; Christine Heim; Curt Broman; Jan Åström; Martin J. Whitehouse; Magnus Ivarsson; Sandra Siljeström; Peter Sjövall
Precipitation of exceptionally 13C-depleted authigenic carbonate is a result of, and thus a tracer for, sulphate-dependent anaerobic methane oxidation, particularly in marine sediments. Although these carbonates typically are less depleted in 13C than in the source methane, because of incorporation of C also from other sources, they are far more depleted in 13C (δ13C as light as −69‰ V-PDB) than in carbonates formed where no methane is involved. Here we show that oxidation of biogenic methane in carbon-poor deep groundwater in fractured granitoid rocks has resulted in fracture-wall precipitation of the most extremely 13C-depleted carbonates ever reported, δ13C down to −125‰ V-PDB. A microbial consortium of sulphate reducers and methane oxidizers has been involved, as revealed by biomarker signatures in the carbonates and S-isotope compositions of co-genetic sulphide. Methane formed at shallow depths has been oxidized at several hundred metres depth at the transition to a deep-seated sulphate-rich saline water. This process is so far an unrecognized terrestrial sink of methane.
Analytical Chemistry | 2010
Anders Gunnarsson; Felix Kollmer; Sascha Sohn; Fredrik Höök; Peter Sjövall
The capabilities of time-of-flight secondary ion mass spectrometry (TOF-SIMS) with regards to limits in lateral resolution for biological samples are examined using supported lipid bilayers and individual lipid vesicles, both being among the most commonly used cell membrane mimics. Using supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers confined to a SiO(2) substrate by a chemically modified gold surface, the edge of the lipid bilayer was analyzed by imaging TOF-SIMS to assess the lateral resolution. The results using 80 keV Bi(3)(2+) primary ions show that, under optimized conditions, mass spectrometry imaging of specific unlabeled lipid fragments is possible with sub-100 nm lateral resolution. Comparison of the secondary ion yields for the phosphocholine ion (m/z 184) from a POPC bilayer using C(60)(+) or Bi(3)(+) primary ions showed similar results, indicating an advantage of Bi(3)(+) primary ions for high-resolution imaging of lipid membranes, due to their better demonstrated focusing capability. Moreover, using 300 nm vesicles of different lipid composition, the capability to detect and chemically identify individual submicrometer lipid vesicles at separations down to approximately 1 microm is demonstrated.
Colloids and Surfaces B: Biointerfaces | 2003
Håkan Nygren; Cecilia Eriksson; Per Malmberg; Herman Sahlin; Lennart Carlsson; Jukka Lausmaa; Peter Sjövall
Imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) was used for characterization and subcellular localization of membrane lipids in leukocytes adhering to glass surfaces. The cells were prepared by freeze drying in 0.15 M ammonium formiate at pH 7.2–7.4. Imprints of the cells were made on silver foil, and the silver surface was analyzed by imaging TOF-SIMS. TOF-SIMS spectra were recorded by scanning the primary ion beam over the analysis area and acquiring positive mass spectra of the ions leaving the surface. The relative brightness of each pixel within the analysis area reflects the signal intensity of a selected ion in that pixel. Data was collected separately at high mass resolution m/Δm>7000 and at high lateral resolution (≥0.5 μm). This cell preparation procedure allows localization of cholesterol and phosphocholine in surface-adhering cells.
Nano Letters | 2010
Anders Gunnarsson; Peter Sjövall; Fredrik Höök
We report on a mass-spectrometry (time-of-flight secondary ion mass spectrometry, TOF-SIMS) based method for multiplexed DNA detection utilizing a random array, where the lipid composition of small unilamellar liposomes act as chemical barcodes to identify unique DNA target sequences down to the single molecule level. In a sandwich format, suspended target-DNA to be detected mediates the binding of capture-DNA modified liposomes to surface-immobilized probe-DNA. With the lipid composition of each liposome encoding a unique target-DNA sequence, TOF-SIMS analysis was used to determine the chemical fingerprint of the bound liposomes. Using high-resolution TOF-SIMS imaging, providing sub-200 nm spatial resolution, single DNA targets could be detected and identified via the chemical fingerprint of individual liposomes. The results also demonstrate the capability of TOF-SIMS to provide multiplexed detection of DNA targets on substrate areas in the micrometer range. Together with a high multiplexing capacity, this makes the concept an interesting alternative to existing barcode concepts based on fluorescence, Raman, or graphical codes for small-scale bioanalysis.