Peter Skands
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Skands.
Computer Physics Communications | 2010
T. Binoth; F. Boudjema; Günther Dissertori; Achilleas Lazopoulos; Ansgar Denner; Stefan Dittmaier; Rikkert Frederix; Nicolas Greiner; Stefan Höche; Walter T. Giele; Peter Skands; J. Winter; T. Gleisberg; Jennifer Archibald; G. Heinrich; Frank Krauss; D. Maître; Manuel Huber; J. Huston; N. Kauer; Fabio Maltoni; Carlo Oleari; Giampiero Passarino; R. Pittau; S. Pozzorini; Thomas Reiter; Steffen Schumann; Giulia Zanderighi
Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs. Dedicated to the memory of, and in tribute to, Thomas Binoth, who led the effort to develop this proposal for Les Houches 2009. Thomas led the discussions, set up the subgroups, collected the contributions, and wrote and edited this paper. He made a promise that the paper would be on the arXiv the first week of January, and we are faithfully fulfilling his promise. In his honour, we would like to call this the Binoth Les Houches Accord.
arXiv: High Energy Physics - Phenomenology | 2016
M. Mangano; M. Chiesa; F. Febres Cordero; M. Selvaggi; Radja Boughezal; Barbara Jäger; H. Martinez; A. Shivaji; Stefano Carrazza; G. Montagna; Frank Petriello; A. Vicini; S. Kallweit; F. Piccinini; Giulia Zanderighi; M.V. Garzelli; S. Boselli; Fabrizio Caola; T. Pierog; E. Re; Philipp Maierhöfer; C. Bauer; C. M. Carloni Calame; P. Torrielli; L. Salfelder; P. Ferrarese; H. Ita; Marek Schönherr; X. Garcia i Tormo; Andrzej Siodmok
This chapter documents the production rates and typical distributions for a number of benchmark Standard Model processes, and discusses new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.This chapter documents the production rates and typical distributions for a number of benchmark Standard Model processes, and discusses new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.This chapter documents the production rates and typical distributions for a number of benchmark Standard Model processes, and discusses new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.
Journal of High Energy Physics | 2017
P. Gras; Stefan Höche; D. Kar; Andrew J. Larkoski; Leif Lönnblad; S. Plätzer; Andrzej Siodmok; Peter Skands; Gregory Soyez; Jesse Thaler
A bstractBy measuring the substructure of a jet, one can assign it a “quark” or “gluon” tag. In the eikonal (double-logarithmic) limit, quark/gluon discrimination is determined solely by the color factor of the initiating parton (CF versus CA). In this paper, we confront the challenges faced when going beyond this leading-order understanding, using both parton-shower generators and first-principles calculations to assess the impact of higher-order perturbative and nonperturbative physics. Working in the idealized context of electron-positron collisions, where one can define a proxy for quark and gluon jets based on the Lorentz structure of the production vertex, we find a fascinating interplay between perturbative shower effects and nonperturbative hadronization effects. Turning to proton-proton collisions, we highlight a core set of measurements that would constrain current uncertainties in quark/gluon tagging and improve the overall modeling of jets at the Large Hadron Collider.
Physical Review D | 2016
Stephen Mrenna; Peter Skands
In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event generators, the estimation of such uncertainties traditionally requires independent MC runs for each variation, for a linear increase in total run time. In this work, we report on an automated evaluation of the dominant (renormalization-scale and nonsingular) perturbative uncertainties in the pythia 8 event generator, with only a modest computational overhead. Each generated event is accompanied by a vector of alternative weights (one for each uncertainty variation), with each set separately preserving the total cross section. Explicit scale-compensating terms can be included, reflecting known coefficients of higher-order splitting terms and reducing the effect of the variations. The formalism also allows for the enhancement of rare partonic splittings, such as
European Physical Journal C | 2016
Nadine Fischer; Stefan Prestel; Mathias Ritzmann; Peter Skands
gensuremath{rightarrow}boverline{b}
Physics Letters B | 2017
Hai Tao Li; Peter Skands
and
Journal of High Energy Physics | 2000
Peter Skands
qensuremath{rightarrow}qensuremath{gamma}
arXiv: High Energy Physics - Phenomenology | 2013
Walter T. Giele; Lisa Hartgring; David A. Kosower; Eric Laenen; Andrew J. Larkoski; Juan J. Lopez-Villarejo; Mathias Ritzmann; Peter Skands
, to obtain weighted samples enriched in these splittings while preserving the correct physical Sudakov factors.
arXiv: High Energy Physics - Phenomenology | 2016
Nadine Fischer; Peter Skands
We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are
European Physical Journal C | 2016
Tim Martin; Peter Skands; Sinead Farrington