Peter Steier
University of Vienna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Steier.
Neuron | 2012
Olaf Bergmann; Jakob Liebl; Samuel Bernard; Kanar Alkass; Maggie S.Y. Yeung; Peter Steier; Walter Kutschera; Lars Johnson; Mikael Landén; Henrik Druid; Kirsty L. Spalding; Jonas Frisén
Continuous turnover of neurons in the olfactory bulb is implicated in several key aspects of olfaction. There is a dramatic decline postnatally in the number of migratory neuroblasts en route to the olfactory bulb in humans, and it has been unclear to what extent the small number of neuroblasts at later stages contributes new neurons to the olfactory bulb. We have assessed the age of olfactory bulb neurons in humans by measuring the levels of nuclear bomb test-derived (14)C in genomic DNA. We report that (14)C concentrations correspond to the atmospheric levels at the time of birth of the individuals, establishing that there is very limited, if any, postnatal neurogenesis in the human olfactory bulb. This identifies a fundamental difference in the plasticity of the human brain compared to other mammals.
Nature | 2011
Peter Arner; Samuel Bernard; Mehran Salehpour; Göran Possnert; Jakob Liebl; Peter Steier; Bruce A. Buchholz; Mats Eriksson; Erik Arner; Hans Hauner; Thomas Skurk; Mikael Rydén; Keith N. Frayn; Kirsty L. Spalding
Adipose tissue mass is determined by the storage and removal of triglycerides in adipocytes. Little is known, however, about adipose lipid turnover in humans in health and pathology. To study this in vivo, here we determined lipid age by measuring 14C derived from above ground nuclear bomb tests in adipocyte lipids. We report that during the average ten-year lifespan of human adipocytes, triglycerides are renewed six times. Lipid age is independent of adipocyte size, is very stable across a wide range of adult ages and does not differ between genders. Adipocyte lipid turnover, however, is strongly related to conditions with disturbed lipid metabolism. In obesity, triglyceride removal rate (lipolysis followed by oxidation) is decreased and the amount of triglycerides stored each year is increased. In contrast, both lipid removal and storage rates are decreased in non-obese patients diagnosed with the most common hereditary form of dyslipidaemia, familial combined hyperlipidaemia. Lipid removal rate is positively correlated with the capacity of adipocytes to break down triglycerides, as assessed through lipolysis, and is inversely related to insulin resistance. Our data support a mechanism in which adipocyte lipid storage and removal have different roles in health and pathology. High storage but low triglyceride removal promotes fat tissue accumulation and obesity. Reduction of both triglyceride storage and removal decreases lipid shunting through adipose tissue and thus promotes dyslipidaemia. We identify adipocyte lipid turnover as a novel target for prevention and treatment of metabolic disease.
Nature | 2005
Eva Maria Wild; Maria Teschler-Nicola; Walter Kutschera; Peter Steier; Erik Trinkaus; Wolfgang Wanek
The human fossil assemblage from the Mladeč Caves in Moravia (Czech Republic) has been considered to derive from a middle or later phase of the Central European Aurignacian period on the basis of archaeological remains (a few stone artefacts and organic items such as bone points, awls, perforated teeth), despite questions of association between the human fossils and the archaeological materials and concerning the chronological implications of the limited archaeological remains. The morphological variability in the human assemblage, the presence of apparently archaic features in some specimens, and the assumed early date of the remains have made this fossil assemblage pivotal in assessments of modern human emergence within Europe. We present here the first successful direct accelerator mass spectrometry radiocarbon dating of five representative human fossils from the site. We selected sample materials from teeth and from one bone for 14C dating. The four tooth samples yielded uncalibrated ages of ∼31,000 14C years before present, and the bone sample (an ulna) provided an uncertain more-recent age. These data are sufficient to confirm that the Mladeč human assemblage is the oldest cranial, dental and postcranial assemblage of early modern humans in Europe and is therefore central to discussions of modern human emergence in the northwestern Old World and the fate of the Neanderthals.
Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2000
Eva Maria Wild; K.A Arlamovsky; Robin Golser; Walter Kutschera; Alfred Priller; Stephan Puchegger; Werner Rom; Peter Steier; W Vycudilik
Abstract Samples originating from the time period after 1950 can be radiocarbon dated utilising the 14C bomb peak as a calibration curve. The applicability of “radiocarbon dating” of recent organic human material for the determination of the time of death of humans was tested. The radiocarbon results from hair and lipid samples from individuals with known date of death were compared with the results from two individuals with unknown time of death. An estimate of the year of death for the unknowns could be derived by this way. Due to the long turnover time of collagen in human bones it is not possible to use the radiocarbon content of bone collagen for a reliable estimate. In order to study the time dependence of the collagen turnover we tested “soft” chemical methods for the isolation of collagen from the bone matrix. First radiocarbon results of this investigation are presented.
International Journal of Mass Spectrometry | 2003
Christof Vockenhuber; Irshad Ahmad; Robin Golser; Walter Kutschera; Vitaly Liechtenstein; Alfred Priller; Peter Steier; Stephan R. Winkler
Abstract This paper describes the upgrade of the Vienna Environmental Research Accelerator (VERA) to a universal facility for accelerator mass spectrometry (AMS). As a result, it is now possible to measure many long-lived radionuclides at natural abundances across the nuclear chart, from the lightest ( 10 Be ) to the heaviest ( 244 Pu ). Particular emphasis is placed on measurements to understand the ion optics and the origin of background ions, which ultimately limit the sensitivity. VERA is now ready to venture into the realm of actinides (e.g., 236 U , 244 Pu ), and other heavy radionuclides (e.g., 182 Hf ), which promise interesting applications in astrophysics and other fields.
Radiocarbon | 2000
Peter Steier; Werner Rom
Bayesian mathematics provides a tool for combining radiocarbon dating results on findings from an archaeo- logical context with independent archaeological information such as the chronological order, which may be inferred from stratigraphy. The goal is to arrive at both a more precise and a more accurate date. However, by means of simulated measure- ments we will show that specific assumptions about prior probabilities—implemented in calibration programs and not evident to the user —may create artifacts. This may result in dates with higher precision but lower accuracy, and which are no longer in agreement with the true ages of the findings.
Environmental Science & Technology | 2013
Xiaolin Hou; Pavel P. Povinec; L. Zhang; Keliang Shi; Dana Lee Biddulph; Ching Chih Chang; Yukun Fan; Robin Golser; Yingkun Hou; M. Ješkovský; A.J.Tim Jull; Qi Liu; Maoyi Luo; Peter Steier; Weijian Zhou
The Fukushima nuclear accident in March 2011 has released a large amount of radioactive pollutants to the environment. Of the pollutants, iodine-129 is a long-lived radionuclide and will remain in the environment for millions of years. This work first report levels and inorganic speciation of (129)I in seawater depth profiles collected offshore Fukushima in June 2011. Significantly elevated (129)I concentrations in surface water were observed with the highest (129)I/(127)I atomic ratio of 2.2 × 10(-9) in the surface seawater 40 km offshore Fukushima. Iodide was found as the dominant species of (129)I, while stable (127)I was mainly in iodate form, reflecting the fact that the major source of (129)I is the direct liquid discharges from the Fukushima NPP. The amount of (129)I directly discharged from the Fukushima Dai-ichi nuclear power plant to the sea was estimated to be 2.35 GBq, and about 1.09 GBq of (129)I released to the atmosphere from the accident was deposited in the sea offshore Fukushima. A total release of 8.06 GBq (or 1.2 kg) of (129)I from the Fukushima accident was estimated. These Fukushima-derived (129)I data provide necessary information for the investigation of water circulation and geochemical cycle of iodine in the northwestern Pacific Ocean in the future.
Science of The Total Environment | 2009
A. Sakaguchi; Kenta Kawai; Peter Steier; F. Quinto; K. Mino; Junpei Tomita; Masaharu Hoshi; N. Whitehead; Masayoshi Yamamoto
The global fallout (236)U level in soil was deduced from measurements of (236)U, (239+240)Pu and (137)Cs in surface soils which are solely influenced by global fallout. A total of 12 soil cores from the depths of 0-10, 0-20 and 0-30 cm were collected at a flat forest area in Japan. Concentrations of (239+240)Pu and (238)U were determined by alpha-particle spectrometry, while the (236)U/(238)U ratio was measured with accelerator mass spectrometry (AMS). Consistent (236)U/(239)Pu ratios between 0.212 and 0.253 were found. Using this ratio, the total global fallout of (236)U on the earth is estimated to be as much as ca. 900 kg. This knowledge will contribute to the promotion of research on U isotopes, including (236)U, for the fields of geo-resources, waste management and geochemistry.
Nature | 2016
A. Wallner; J. Feige; N. Kinoshita; M. Paul; L. K. Fifield; R. Golser; M. Honda; U. Linnemann; Hiroyuki Matsuzaki; S. Merchel; G. Rugel; S. G. Tims; Peter Steier; T. Yamagata; S. R. Winkler
The rate of supernovae in our local Galactic neighbourhood within a distance of about 100 parsecs from Earth is estimated to be one every 2–4 million years, based on the total rate in the Milky Way (2.0 ± 0.7 per century). Recent massive-star and supernova activity in Earth’s vicinity may be traced by radionuclides with half-lives of up to 100 million years, if trapped in interstellar dust grains that penetrate the Solar System. One such radionuclide is 60Fe (with a half-life of 2.6 million years), which is ejected in supernova explosions and winds from massive stars. Here we report that the 60Fe signal observed previously in deep-sea crusts is global, extended in time and of interstellar origin from multiple events. We analysed deep-sea archives from all major oceans for 60Fe deposition via the accretion of interstellar dust particles. Our results reveal 60Fe interstellar influxes onto Earth at 1.5–3.2 million years ago and at 6.5–8.7 million years ago. The signal measured implies that a few per cent of fresh 60Fe was captured in dust and deposited on Earth. Our findings indicate multiple supernova and massive-star events during the last ten million years at distances of up to 100 parsecs.
Environmental Science & Technology | 2014
Taeko Shinonaga; Peter Steier; Markus Lagos; Takehisa Ohkura
Plutonium (Pu) and non-natural uranium (U) originating from the Fukushima Daiichi Nuclear Power Plant (FDNPP) were identified in the atmosphere at 120 km distance from the FDNPP analyzing the ratio of number of atoms, following written as n(isotope)/n(isotope), of Pu and U. The n((240)Pu)/n((239)Pu), n((241)Pu)/n((239)Pu), n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U) in aerosol samples collected before and after the FDNPP incident were analyzed by accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS). The activity concentrations of (137)Cs and (134)Cs in the same samples were also analyzed by gamma spectrometry before the destructive analysis. Comparing the time series of analytical data on Pu and U obtained in this study with previously reported data on Pu, U, and radioactive Cs, we concluded that Pu and non-natural U from the FDNPP were transported in the atmosphere directly over a 120 km distance by aerosol and wind within a few days after the reactor hydrogen explosions. Effective dose of Pu were calculated using the data of Pu: (130 ± 21) nBq/m(3), obtained in this study. We found that the airborne Pu contributes only negligibly to the total dose at the time of the incident. However the analytical results show that the amount of Pu and non-natural U certainly increased in the environment after the incident.