Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Stoilov is active.

Publication


Featured researches published by Peter Stoilov.


Molecular and Cellular Biology | 2005

Homologues of the Caenorhabditis elegans Fox-1 Protein Are Neuronal Splicing Regulators in Mammals†

Jason G. Underwood; Paul L. Boutz; Joseph D. Dougherty; Peter Stoilov; Douglas L. Black

ABSTRACT A vertebrate homologue of the Fox-1 protein from C. elegans was recently shown to bind to the element GCAUG and to act as an inhibitor of alternative splicing patterns in muscle. The element UGCAUG is a splicing enhancer element found downstream of numerous neuron-specific exons. We show here that mouse Fox-1 (mFox-1) and another homologue, Fox-2, are both specifically expressed in neurons in addition to muscle and heart. The mammalian Fox genes are very complex transcription units that generate transcripts from multiple promoters and with multiple internal exons whose inclusion is regulated. These genes produce a large family of proteins with variable N and C termini and internal deletions. We show that the overexpression of both Fox-1 and Fox-2 isoforms specifically activates splicing of neuronally regulated exons. This splicing activation requires UGCAUG enhancer elements. Conversely, RNA interference-mediated knockdown of Fox protein expression inhibits splicing of UGCAUG-dependent exons. These experiments show that this large family of proteins regulates splicing in the nervous system. They do this through a splicing enhancer function, in addition to their apparent negative effects on splicing in vertebrate muscle and in worms.


Nature Genetics | 2011

The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain.

Lauren T. Gehman; Peter Stoilov; Jamie Maguire; Andrey Damianov; Chia-Ho Lin; Lily Shiue; Manuel Ares; Istvan Mody; Douglas L. Black

The Rbfox family of RNA binding proteins regulates alternative splicing of many important neuronal transcripts, but its role in neuronal physiology is not clear. We show here that central nervous system–specific deletion of the gene encoding Rbfox1 results in heightened susceptibility to spontaneous and kainic acid–induced seizures. Electrophysiological recording revealed a corresponding increase in neuronal excitability in the dentate gyrus of the knockout mice. Whole-transcriptome analyses identified multiple splicing changes in the Rbfox1−/− brain with few changes in overall transcript abundance. These splicing changes alter proteins that mediate synaptic transmission and membrane excitation. Thus, Rbfox1 directs a genetic program required in the prevention of neuronal hyperexcitation and seizures. The Rbfox1 knockout mice provide a new model to study the post-transcriptional regulation of synaptic function.


Genes & Development | 2012

The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function

Lauren T. Gehman; Pratap Meera; Peter Stoilov; Lily Shiue; Janelle E. O'Brien; Miriam H. Meisler; Manuel Ares; Thomas S. Otis; Douglas L. Black

The Rbfox proteins (Rbfox1, Rbfox2, and Rbfox3) regulate the alternative splicing of many important neuronal transcripts and have been implicated in a variety of neurological disorders. However, their roles in brain development and function are not well understood, in part due to redundancy in their activities. Here we show that, unlike Rbfox1 deletion, the CNS-specific deletion of Rbfox2 disrupts cerebellar development. Genome-wide analysis of Rbfox2(-/-) brain RNA identifies numerous splicing changes altering proteins important both for brain development and mature neuronal function. To separate developmental defects from alterations in the physiology of mature cells, Rbfox1 and Rbfox2 were deleted from mature Purkinje cells, resulting in highly irregular firing. Notably, the Scn8a mRNA encoding the Na(v)1.6 sodium channel, a key mediator of Purkinje cell pacemaking, is improperly spliced in RbFox2 and Rbfox1 mutant brains, leading to highly reduced protein expression. Thus, Rbfox2 protein controls a post-transcriptional program required for proper brain development. Rbfox2 is subsequently required with Rbfox1 to maintain mature neuronal physiology, specifically Purkinje cell pacemaking, through their shared control of sodium channel transcript splicing.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A high-throughput screening strategy identifies cardiotonic steroids as alternative splicing modulators

Peter Stoilov; Chia-Ho Lin; Robert Damoiseaux; Julia Nikolic; Douglas L. Black

Alternative splicing has emerged as a promising therapeutic target in a number of human disorders. However, the discovery of compounds that target the splicing reaction has been hindered by the lack of suitable high-throughput screening assays. Conversely, the effects of known drugs on the splicing reaction are mostly unclear and not routinely assessed. We have developed a two-color fluorescent reporter for cellular assays of exon inclusion that can accommodate nearly any cassette exon and minimizes interfering effects from changes in transcription and translation. We used microtubule-associated protein tau (MAPT) exon 10, whose missplicing causes frontotemporal dementia, to test the reporter in screening libraries of known bioactive compounds. These screens yielded several compounds that alter the splicing of the exon, both in the reporter and in the endogenous MAPT mRNA. One compound, digoxin, has long been used in the treatment of heart failure, but was not known to modulate splicing. The positive compounds target different signal transduction pathways, and microarray analysis shows that each compound affects the splicing of a different set of exons in addition to MAPT exon 10. Our results identify currently prescribed cardiotonic steroids as modulators of alternative splicing and demonstrate the feasibility of screening for drugs that alter exon inclusion.


eLife | 2014

The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation

Qin Li; Sika Zheng; Areum Han; Chia-Ho Lin; Peter Stoilov; Xiang-Dong Fu; Douglas L. Black

We show that the splicing regulator PTBP2 controls a genetic program essential for neuronal maturation. Depletion of PTBP2 in developing mouse cortex leads to degeneration of these tissues over the first three postnatal weeks, a time when the normal cortex expands and develops mature circuits. Cultured Ptbp2−/− neurons exhibit the same initial viability as wild type, with proper neurite outgrowth and marker expression. However, these mutant cells subsequently fail to mature and die after a week in culture. Transcriptome-wide analyses identify many exons that share a pattern of mis-regulation in the mutant brains, where isoforms normally found in adults are precociously expressed in the developing embryo. These transcripts encode proteins affecting neurite growth, pre- and post-synaptic assembly, and synaptic transmission. Our results define a new genetic regulatory program, where PTBP2 acts to temporarily repress expression of adult protein isoforms until the final maturation of the neuron. DOI: http://dx.doi.org/10.7554/eLife.01201.001


RNA | 2012

The cardiotonic steroid digitoxin regulates alternative splicing through depletion of the splicing factors SRSF3 and TRA2B

Erik S. Anderson; Chia-Ho Lin; Xinshu Xiao; Peter Stoilov; Christopher B. Burge; Douglas L. Black

Modulation of alternative pre-mRNA splicing is a potential approach to therapeutic targeting for a variety of human diseases. We investigated the mechanism by which digitoxin, a member of the cardiotonic steroid class of drugs, regulates alternative splicing. Transcriptome-wide analysis identified a large set of alternative splicing events that change after digitoxin treatment. Within and adjacent to these regulated exons, we identified enrichment of potential binding sites for the splicing factors SRp20 (SRSF3/SFRS3) and Tra2-β (SFRS10/TRA2B). We further find that both of these proteins are depleted from cells by digitoxin treatment. Characterization of SRp20 and Tra2-β splicing targets revealed that many, but not all, digitoxin-induced splicing changes can be attributed to the depletion of one or both of these factors. Re-expression of SRp20 or Tra2-β after digitoxin treatment restores normal splicing of their targets, indicating that the digitoxin effect is directly due to these factors. These results demonstrate that cardiotonic steroids, long prescribed in the clinical treatment of heart failure, have broad effects on the cellular transcriptome through these and likely other RNA binding proteins. The approach described here can be used to identify targets of other potential therapeutics that act as alternative splicing modulators.


PLOS Computational Biology | 2014

De novo prediction of PTBP1 binding and splicing targets reveals unexpected features of its RNA recognition and function.

Areum Han; Peter Stoilov; Anthony J Linares; Yu Zhou; Xiang-Dong Fu; Douglas L. Black

The splicing regulator Polypyrimidine Tract Binding Protein (PTBP1) has four RNA binding domains that each binds a short pyrimidine element, allowing recognition of diverse pyrimidine-rich sequences. This variation makes it difficult to evaluate PTBP1 binding to particular sites based on sequence alone and thus to identify target RNAs. Conversely, transcriptome-wide binding assays such as CLIP identify many in vivo targets, but do not provide a quantitative assessment of binding and are informative only for the cells where the analysis is performed. A general method of predicting PTBP1 binding and possible targets in any cell type is needed. We developed computational models that predict the binding and splicing targets of PTBP1. A Hidden Markov Model (HMM), trained on CLIP-seq data, was used to score probable PTBP1 binding sites. Scores from this model are highly correlated (ρ = −0.9) with experimentally determined dissociation constants. Notably, we find that the protein is not strictly pyrimidine specific, as interspersed Guanosine residues are well tolerated within PTBP1 binding sites. This model identifies many previously unrecognized PTBP1 binding sites, and can score PTBP1 binding across the transcriptome in the absence of CLIP data. Using this model to examine the placement of PTBP1 binding sites in controlling splicing, we trained a multinomial logistic model on sets of PTBP1 regulated and unregulated exons. Applying this model to rank exons across the mouse transcriptome identifies known PTBP1 targets and many new exons that were confirmed as PTBP1-repressed by RT-PCR and RNA-seq after PTBP1 depletion. We find that PTBP1 dependent exons are diverse in structure and do not all fit previous descriptions of the placement of PTBP1 binding sites. Our study uncovers new features of RNA recognition and splicing regulation by PTBP1. This approach can be applied to other multi-RRM domain proteins to assess binding site degeneracy and multifactorial splicing regulation.


Nature Immunology | 2016

Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia

Jing Fang; Lyndsey Bolanos; Kwangmin Choi; Xiaona Liu; Susanne Christie; Shailaja Akunuru; R. Kumar; Dehua Wang; Xiaoting Chen; Kenneth D. Greis; Peter Stoilov; Marie Dominique Filippi; Jaroslaw P. Maciejewski; Guillermo Garcia-Manero; Matthew T. Weirauch; Nathan Salomonis; Hartmut Geiger; Yi Zheng; Daniel T. Starczynowski

Toll-like receptor (TLR) activation contributes to premalignant hematologic conditions, such as myelodysplastic syndromes (MDS). TRAF6, a TLR effector with ubiquitin (Ub) ligase activity, is overexpressed in MDS hematopoietic stem/progenitor cells (HSPCs). We found that TRAF6 overexpression in mouse HSPC results in impaired hematopoiesis and bone marrow failure. Using a global Ub screen, we identified hnRNPA1, an RNA-binding protein and auxiliary splicing factor, as a substrate of TRAF6. TRAF6 ubiquitination of hnRNPA1 regulated alternative splicing of Arhgap1, which resulted in activation of the GTP-binding Rho family protein Cdc42 and accounted for hematopoietic defects in TRAF6-expressing HSPCs. These results implicate Ub signaling in coordinating RNA processing by TLR pathways during an immune response and in premalignant hematologic diseases, such as MDS.Toll-like receptor (TLR) activation contributes to premalignant hematologic conditions, such as myelodysplastic syndromes (MDS). TRAF6, a TLR-effector with ubiquitin (Ub) ligase activity, is overexpressed in MDS hematopoietic stem/progenitor cells (HSPC). Here we show that TRAF6 overexpression in mouse HSPC resulted in impaired hematopoiesis and bone marrow failure. Through the use of a global Ub screen, we identified hnRNPA1, an RNA-binding protein and auxiliary splicing factor, as a substrate of TRAF6. TRAF6 ubiquitination of hnRNPA1 regulated alternative splicing of Arhgap1, which resulted in Cdc42 activation and accounted for hematopoietic defects in TRAF6-expressing HSPC. These results implicate Ub signaling in coordinating RNA processing by TLR pathways during an immune response and in premalignant hematologic diseases, such as MDS.Toll-like receptor (TLR) activation contributes to premalignant hematologic conditions, such as myelodysplastic syndromes (MDS). TRAF6, a TLR effector with ubiquitin (Ub) ligase activity, is overexpressed in MDS hematopoietic stem/progenitor cells (HSPCs). We found that TRAF6 overexpression in mouse HSPC results in impaired hematopoiesis and bone marrow failure. Using a global Ub screen, we identified hnRNPA1, an RNA-binding protein and auxiliary splicing factor, as a substrate of TRAF6. TRAF6 ubiquitination of hnRNPA1 regulated alternative splicing of Arhgap1, which resulted in activation of the GTP-binding Rho family protein Cdc42 and accounted for hematopoietic defects in TRAF6-expressing HSPCs. These results implicate Ub signaling in coordinating RNA processing by TLR pathways during an immune response and in premalignant hematologic diseases, such as MDS.


Molecular and Cellular Biology | 2015

Alternative Splicing Shapes the Phenotype of a Mutation in BBS8 To Cause Nonsyndromic Retinitis Pigmentosa

Ratnesh Singh; Saravanan Kolandaivelu; Visvanathan Ramamurthy; Peter Stoilov

ABSTRACT Bardet-Biedl syndrome (BBS) is a genetic disorder affecting multiple systems and organs in the body. Several mutations in genes associated with BBS affect only photoreceptor cells and cause nonsyndromic retinitis pigmentosa (RP), raising the issue of why certain mutations manifest as a systemic disorder whereas other changes in the same gene affect only a specific cell type. Here, we show that cell-type-specific alternative splicing is responsible for confining the phenotype of the A-to-G substitution in the 3′ splice site of BBS8 exon 2A (IVS1-2A>G mutation) in the BBS8 gene to photoreceptor cells. The IVS1-2A>G mutation leads to missplicing of BBS8 exon 2A, producing a frameshift in the BBS8 reading frame and thus eliminating the protein specifically in photoreceptor cells. Cell types other than photoreceptors skip exon 2A from the mature BBS8 transcript, which renders them immune to the mutation. We also show that the splicing of Bbs8 exon 2A in photoreceptors is directed exclusively by redundant splicing enhancers located in the adjacent introns. These intronic sequences are sufficient for photoreceptor-cell-specific splicing of heterologous exons, including an exon with a randomized sequence.


Nucleic Acids Research | 2013

Characterization of novel inhibitors of HIV-1 replication that function via alteration of viral RNA processing and rev function

Raymond W. Wong; Ahalya Balachandran; Matthew Haaland; Peter Stoilov; Alan Cochrane

Expression of the complete HIV-1 genome depends on the appropriate processing of viral RNA. Altering the balance of viral RNA processing impairs replication of the virus. In this report, we characterize two small molecule modulators of HIV-1 RNA processing, 8-azaguanine and 2-(2-(5-nitro-2-thienyl)vinyl)quinoline (5350150), which function by distinct mechanisms to suppress viral gene expression. Although only 8-Azaguanine dramatically decreased accumulation of HIV-1 unspliced and singly spliced RNAs and altered splice site usage, both compounds blocked Gag and Env expression without affecting production of Tat (p16) and Rev regulatory proteins. Subsequent analyses suggest that these compounds affect Rev-mediated RNA transport by different mechanisms. Both compounds induced cytoplasmic accumulation of Rev, suggesting that they function, in part, by impairing Rev function. This conclusion is supported by the determination that both drugs block the nuclear export of genomic HIV-1 RNA to the cytoplasm. Testing confirmed that these compounds suppress HIV-1 expression in T cells at doses below those previously used in humans for tumour chemotherapy. Together, our observations demonstrate that small molecules can be used to inhibit HIV-1 replication by altering another avenue of viral RNA processing, offering the potential for the development of novel therapeutics for controlling this disease.

Collaboration


Dive into the Peter Stoilov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chia-Ho Lin

University of California

View shared research outputs
Top Co-Authors

Avatar

Areum Han

University of California

View shared research outputs
Top Co-Authors

Avatar

Daniel T. Starczynowski

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Guillermo Garcia-Manero

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Fang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kwangmin Choi

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lily Shiue

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge