Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter T. May is active.

Publication


Featured researches published by Peter T. May.


Bulletin of the American Meteorological Society | 2008

The Tropical Warm Pool International Cloud Experiment

Peter T. May; James H. Mather; G. Vaughan; Christian Jakob; Greg M. McFarquhar; Keith Bower; Gerald G. Mace

A comprehensive dataset describing tropical cloud systems and their environmental setting and impacts has been collected during the Tropical Warm Pool International Cloud Experiment (TWPICE) and Aerosol and Chemical Transport in Tropical Convection (ACTIVE) campaign in the area around Darwin, Northern Australia, in January and February 2006. The aim of the experiment was to observe the evolution of tropical cloud systems and their interaction with the environment within an observational framework optimized for a range of modeling activities with the goal of improving the representation of cloud and aerosol process in a range of models. The experiment design utilized permanent observational facilities in Darwin, including a polarimetric weather radar and a suite of cloud remote-sensing instruments. This was augmented by a dense network of soundings, together with radiation, flux, lightning, and remote-sensing measurements, as well as oceanographic observations. A fleet of five research aircraft, including ...


Bulletin of the American Meteorological Society | 2000

The Maritime Continent Thunderstorm Experiment (MCTEX): Overview and some results

T. D. Keenan; Steven A. Rutledge; Richard E. Carbone; James W. Wilson; T. Takahashi; Peter T. May; Nigel J. Tapper; M. Platt; Jorg M. Hacker; S. Sekelsky; Mitchell W. Moncrieff; K. Saito; G. Holland; A. Crook; Kenneth S. Gage

A description is given of the Maritime Continent Thunderstorm Experiment held over the Tiwi Islands (12°S, 130°E) during the period November–December 1995. The unique nature of regularly occurring storms over these islands enabled a study principally aimed at investigating the life cycle of island-initiated mesoscale convective systems within the Maritime Continent. The program objectives are first outlined and then selected results from various observationally based and modeling studies are summarized. These storms are shown to depend typically on island-scale forcing although external mesoscale disturbances can result in significant storm activity as they pass over the heated island. Particular emphasis is given to summarizing the environmental characteristics and the impact this has on the location of storm development and the associated rainfall distribution. The mean rainfall production from these storms is shown to be about 760 × 105 m3, with considerable variability. The mesoscale evolution is summ...


Journal of Atmospheric and Oceanic Technology | 2009

Using Dual-Polarized Radar and Dual-Frequency Profiler for DSD Characterization: A Case Study from Darwin, Australia

V. N. Bringi; Christopher R. Williams; Merhala Thurai; Peter T. May

Abstract Comparisons are made between the reflectivity Z, median volume diameter D0, and rain rate R from a dual-frequency profiler and the C-band polarimetric radar (C-POL), which are both located near Darwin, Australia. Examples from the premonsoon “buildup” regime and the monsoon (oceanic) regime are used to illustrate the excellent agreement between the dual-profiler retrievals and the polarimetric radar-based retrievals. This work builds on similar works that were limited in scope to shallow tropical showers and predominantly stratiform rain events. The dual-frequency profiler retrievals of D0 and R herein are based on ensemble statistics, whereas the polarimetric radar retrievals are based on algorithms derived by using one season of disdrometer data from Darwin along with scattering simulations. The latest drop shape versus D relation is used as well as the canting angle distribution results obtained from the 80-m fall bridge experiment in the scattering simulations. The scatterplot of D0 from dual...


Bulletin of the American Meteorological Society | 2008

SCOUT-O3/ACTIVE High-altitude Aircraft Measurements around Deep Tropical Convection

G. Vaughan; C. Schiller; A. R. MacKenzie; Keith N. Bower; T. Peter; Hans Schlager; N. R. P. Harris; Peter T. May

During November and December 2005, two consortia of mainly European groups conducted an aircraft campaign in Darwin, Australia, to measure the composition of the tropical upper-troposphere and tropopause regions, between 12 and 20 km, in order to investigate the transport and transformation in deep convection of water vapor, aerosols, and trace chemicals. The campaign used two high-altitude aircraft-the Russian M55 Geophysica and the Australian Grob 520 Egrett, which can reach 20 and 15 km, respectively-complemented by upward-pointing lidar measurements from the DLR Falcon and low-level aerosol and chemical measurements from the U.K. Dornier-228. The meteorology during the campaign was characterized mainly by premonsoon conditions-isolated afternoon thunderstorms with more organized convective systems in the evening and overnight. At the beginning of November pronounced pollution resulting from widespread biomass burning was measured by the Dornier, giving way gradually to cleaner conditions by December, thus affording the opportunity to study the influence of aerosols on convection. The Egrett was used mainly to sample in and around the outflow from isolated thunderstorms, with a couple of survey missions near the end. The Geophysica-Falcon pair spent about 40% of their flight hours on survey legs, prioritizing remote sensing of water vapor, cirrus, and trace gases, and the remainder on close encounters with storm systems, prioritizing in situ measurements. Two joint missions with all four aircraft were conducted: on 16 November, during the polluted period, sampling a detached anvil from a single-cell storm, and on 30 November, around a much larger multicellular storm.


Journal of Applied Meteorology | 2001

Sensitivity of 5-cm Wavelength Polarimetric Radar Variables to Raindrop Axial Ratio and Drop Size Distribution

T. D. Keenan; Lawrence D. Carey; Dusan S. Zrnic; Peter T. May

Abstract The sensitivity of polarimetric variables at a 5-cm wavelength to raindrop size and axial ratio is examined using T-matrix modeling of the scattering process for gamma raindrop size distributions fitted to tropical rainfall collected at Darwin, Australia. These simulations demonstrate that, while specific differential phase (KDP)–based estimates of rainfall, attenuation (AH), and differential attenuation are less affected by drop size distribution (DSD) variations, large drop occurrence can have significant impacts. Attenuation is sensitive to the occurrence of large drops, which can produce anomalously high values associated with resonance effect scattering. The polarimetric variables are sensitive to the relation between the equivolume diameter and axial ratio. Variations in the assumed form of the raindrop axial ratio can result in significant biases in rainfall and attenuation. Combined rainfall estimators, which include differential reflectivity (ZDR), such as R(KDP, ZDR) and R(AH, ZDR) are ...


Monthly Weather Review | 1999

Vertical Velocity Characteristics of Deep Convection over Darwin, Australia

Peter T. May; Deepak K. Rajopadhyaya

Continuous vertical velocity measurements using a 50-MHz wind profiler located at Darwin in northern Australia during periods of active convection have been analyzed. This dataset is dominated by continental-type convection. Numerous examples of shallow, deep, and decaying convection were seen and it is shown that only the deep systems have substantial tilts to the draft structure. The most intense updrafts occur above the freezing level, but shallow convection also produces large-amplitude vertical motions. The strength of these updrafts in this dataset is very similar to other tropical, oceanic data. That observation is consistent with the idea that the magnitude of the updrafts is much less in the Tropics than for intense midlatitude convection because the convective available potential energy is distributed over a much deeper layer in the Tropics, although more intense updrafts may be present at other tropical locations, such as the Tiwi Islands north of Darwin. The size of the cores, however, is significantly greater here than with oceanic data and is similar to midlatitude results, thus supporting the suggestion that boundary layer depth is important in determining the horizontal scale. There is a net detrainment in the upward cores above the freezing level occurring at all space scales. The mass flux in intense updrafts is almost constant with height below the freezing level but is almost cancelled by downdrafts and the immediate surrounding environment. Two populations of downdrafts are seen, one a dynamical response associated with intense updrafts at all heights and a second driven by precipitation processes below the freezing level. The core size, intensity, and mass flux are all approximately lognormally distributed. It is shown that a wide range of velocity and size scales contribute to the upward mass flux.


Geophysical Research Letters | 2004

Anatomy of cirrus clouds: Results from the Emerald airborne campaigns

James A. Whiteway; Clive Cook; Martin Gallagher; T. W. Choularton; John E. Harries; Paul Connolly; Reinhold Busen; Keith N. Bower; M. Flynn; Peter T. May; Robin Aspey; Jorg M. Hacker

The Emerald airborne measurement campaigns have provided a view of the anatomy of cirrus clouds in both the tropics and mid-latitudes. These experiments have involved two aircraft that combine remote sensing and in-situ measurements. Results are presented here from two separate flights: one in frontal cirrus above Adelaide, Australia, the other in the cirrus outflow from convection above Darwin. Recorded images of ice crystals are shown in relation to the cloud structure measured simultaneously by an airborne lidar. In mid-latitude frontal cirrus, columnar and irregular ice crystals were observed throughout the cloud while rosettes were found only at the top. The cirrus outflow from a tropical thunderstorm extended for hundreds of kilometres between the heights of 12.2 and 15.8 km. This was composed mainly of hexagonal plates, columns, and large crystal aggregates that originated from within the main core region of the convection. A small number of bullet rosettes were found at the top of the outflow cirrus and this is interpreted as an indication of in-situ crystal formation. It was found that the largest aggregates fell to the lower regions of the outflow cirrus cloud while the single crystals and small aggregates remained at the top.


Journal of Applied Meteorology | 2000

Drop-Size Distribution Characteristics in Tropical Mesoscale Convective Systems

Robert Cifelli; Christopher R. Williams; Deepak K. Rajopadhyaya; Susan K. Avery; Kenneth S. Gage; Peter T. May

Abstract Drop-size distribution characteristics were retrieved in eight tropical mesoscale convective systems (MCS) using a dual-frequency (UHF and VHF) wind profiler technique. The MCSs occurred near Darwin, Australia, during the 1993/94 wet season and were representative of the monsoon (oceanic) regime. The retrieved drop-size parameters were compared with corresponding rain gauge and disdrometer data, and it was found that there was good agreement between the measurements, lending credence to the profiler retrievals of drop-size distribution parameters. The profiler data for each MCS were partitioned into a three-tier classification scheme (i.e., convective, mixed convective–stratiform, and stratiform) based on a modified version of Williams et al to isolate the salient microphysical characteristics in different precipitation types. The resulting analysis allowed for an examination of the drop-size distribution parameters in each category for a height range of about 2.1 km in each MCS. In general, the ...


Monthly Weather Review | 2007

The Statistical Characteristics of Convective Cells in a Monsoon Regime (Darwin, Northern Australia)

Peter T. May; Andrew Ballinger

Abstract A season of operational cell and track data from Darwin, Australia, has been analyzed to explore the statistical characteristics of the convective cell heights. The statistics for the monsoon and break regimes are significantly different with the break season cells being higher for a given reflectivity threshold. The monsoon cells produce more rain, but there are fewer intense cells and there is a much larger contribution from stratiform rain. The monsoon cells are also slightly larger, but shorter lived than the breaks. The shorter lifetime may reflect a more rapid transition to a longer-lived stratiform character. The monsoon regime is shown to be associated with large-scale ascent and higher humidity that may lead to more frequent, but weaker cells. Within regimes, the subset of intense cells generally reach near the tropopause or overshoot. However, there is little evidence in the data for a multimodal distribution of cell heights, except perhaps for the intense monsoon cases. Instead, the pi...


Journal of the Atmospheric Sciences | 1999

The Role of Potential Vorticity Generation in Tropical Cyclone Rainbands

Peter T. May; Greg J. Holland

Abstract The implied heating and potential vorticity generation in tropical cyclone rainbands is derived from observed vertical motion profiles. High levels of potential vorticity generation are found in the stratiform rain regions, sufficient to generate substantial wind maxima along the bands within a couple of hours. Such generation may represent a significant source of potential vorticity for the system as a whole and may have implications for cyclone intensity.

Collaboration


Dive into the Peter T. May's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Vaughan

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deepak K. Rajopadhyaya

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Christopher R. Williams

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge