Peter T. Witkowski
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter T. Witkowski.
Emerging Infectious Diseases | 2012
Sabrina Weiss; Peter T. Witkowski; Brita Auste; Kathrin Nowak; Natalie Weber; Jakob Fahr; Jean-Vivien Mombouli; Nathan D. Wolfe; Jan Felix Drexler; Christian Drosten; Boris Klempa; Fabian H. Leendertz; Detlev H. Krüger
To the Editor: Hantaviruses (family Bunyaviridae) are transmitted from rodent reservoirs to humans. These viruses cause life-threatening human diseases: hantavirus cardiopulmonary syndrome in the Americas and hemorrhagic fever with renal syndrome in Asia and Europe (1). Since 2006, indigenous hantaviruses were reported also from Africa. Sangassou virus was found in an African wood mouse (Hylomyscus simus) in Guinea (2). Discovery of newer African hantaviruses, Tanganya virus and recently Azagny virus, was even more surprising because they were found in shrews (3,4). The detection of hantaviruses in small mammals other than rodents, such as shrews and also moles (4), increasingly raises questions regarding the real hantavirus host range. Bats (order Chiroptera) are already known to harbor a broad variety of emerging pathogens, including other bunyaviruses (5). Their ability to fly and social life history enable efficient pathogen maintenance, evolution, and spread. Therefore, we conducted a study on hantaviruses in bats from Africa. A total of 525 tissue samples from 417 bats representing 28 genera were tested for the presence of hantavirus RNA. Samples originated from different regions in western and central Africa and were collected during 2009 and early 2011. Total RNA was extracted from tissue samples and reverse transcribed. cDNA was screened by PCR specific for sequences of the large genomic segment across the genus Hantavirus (2). One sample yielded a product of the expected size and was subjected to cloning and sequencing. The positive sample (MGB/1209) was obtained from 1 of 18 investigated slit-faced bats (family Nycteridae). The animal was trapped at the Magboi River within Gola National Park, Sierra Leone (7°50.194′N, 10°38.626′W), and the identification as Nycteris hispida has been verified with the voucher specimen (RCJF529). Histologic examination of organs of the animal showed no obvious pathologic findings. The obtained 414-nt sequence covers a genomic region, which was found to correspond to nt position 2,918–3,332 in the large segment open reading frame of prototypic Hantaan virus. Bioinformatic analysis on the amino acid level showed highest degrees of identity to shrew- and mole-associated hantaviruses (Thottapalayam virus 73.0%, Altai virus 69.7%, Nova and Imjin virus 69.3%). On the basis of tree topology of a maximum-likelihood phylogenetic tree, the sequence does not cluster with rodent-associated hantaviruses but groups with those found in shrews and moles (Figure). Figure Maximum-likelihood phylogenetic tree of MGB/1209 virus based on partial large segment sequence (414 nt) and showing the phylogenetic placement of the novel sequence from Nycteris spp. bat compared with hantaviruses associated (i) with shrews and moles: ... Considering that bats are more closely related to shrews and moles than to rodents (6), a certain genetic similarity of a putative bat-borne hantavirus with shrew- and mole-associated hantaviruses seems reasonable. Notably, shrew-associated Thottapalayam virus (India) and Imjin virus (South Korea) seem to be closer relatives, and African Tanganya virus (Guinea) and Azagny virus (Cote d’Ivoire) are more distantly related. Additional sequence data is needed for more conclusive phylogenetic analyses. Because the new amino acid sequence is at least 22% divergent from those of other hantaviruses, we conclude that the bat was infected with a newly found hantavirus. We propose the putative name Magboi virus (MGBV) for the new virus because it was detected in an animal captured at the Magboi River in Sierra Leone. The MGBV nucleotide sequence is novel and has not been known or handled before in our laboratory. Before this study, hantavirus nucleic acid was found in lung and kidney tissues of bats from the genera Eptesicus and Rhinolophus in South Korea. However, nucleotide sequencing showed the presence of prototypical Hantaan virus indicating a spillover infection or laboratory contamination (7). Further screening is necessary to confirm N. hispida as a natural reservoir host of the virus. Although the presented bat-associated sequence is obviously distinct from other hantaviruses, which suggests association with a novel natural host, a spillover infection from another, yet unrecognized host cannot be ruled out. However, detection of the virus exclusively in 1 organ (lung but not in liver, kidney, and spleen; data not shown) suggests a persistent infection that is typically observed in natural hosts of hantaviruses (8). To date, only a few reports exist on cases of hemorrhagic fever with renal syndrome in Africa (9,10). However, underreporting must be assumed because the symptoms resemble those of many other febrile infections. Moreover, in cases of infections by non–rodent-associated hantaviruses, cross-reactivity with routinely used rodent-borne virus antigens should be limited and may hamper human serodiagnostics (1). The results suggest that bats, which are hosts of many emerging pathogens (5), may act as natural reservoirs for hantavirus. The effect of this virus on public health remains to be determined.
Journal of Virology | 2012
Boris Klempa; Peter T. Witkowski; Elena Popugaeva; Brita Auste; Lamine Koivogui; Elisabeth Fichet-Calvet; Thomas Strecker; Jan ter Meulen; Detlev H. Krüger
ABSTRACT We have discovered the first indigenous African hantavirus, Sangassou virus (SANGV). The virus was isolated from an African wood mouse (Hylomyscus simus), trapped in a forest habitat in Guinea, West Africa. Here, we report on the characterization of the genetic and functional properties of the virus. The complete genome of SANGV was determined and showed typical hantavirus organization. The small (S), medium (M), and large (L) genome segments containing genes encoding nucleocapsid protein, two envelope glycoproteins, and viral polymerase were found to be 1,746, 3,650, and 6,531 nucleotides long, respectively. The exact 5′ and 3′ termini for all three segments of the SANGV genome were determined and were predicted to form the panhandle structures typical of bunyaviruses. Phylogenetic analyses of all three segment sequences confirmed SANGV as a Murinae-associated hantavirus most closely related to the European Dobrava-Belgrade virus. We showed, however, that SANGV uses β1 integrin rather than β3 integrin and decay-accelerating factor (DAF)/CD55 as an entry receptor. In addition, we demonstrated a strong induction of type III lambda interferon (IFN-λ) expression in type I IFN-deficient Vero E6 cells by SANGV. These properties are unique within Murinae-associated hantaviruses and make the virus useful in comparative studies focusing on hantavirus pathogenesis.
Biochemical and Biophysical Research Communications | 2010
Peter T. Witkowski; Livia Schuenadel; Julia Wiethaus; Daniel Bourquain; Andreas Kurth; Andreas Nitsche
Impedance-based biosensing known as real-time cell electronic sensing (RT-CES) belongs to an emerging technology for analyzing the status of cells in vitro. In the present study protocols were developed for an RT-CES-based system (xCELLigence™, Roche Applied Science, ACEA Biosciences Inc.) to supplement conventional techniques in pox virology. First, proliferation of cells susceptible to orthopoxviruses was monitored. For virus titration cells were infected with vaccinia virus and cell status, represented by the dimensionless impedance-based cell index (CI), was monitored. A virus-dose dependent decrease in electrical impedance could be shown. Calculation of calibration curves at a suitable CI covering a dynamic range of 4 log enabled the quantification of virus titers in unknown samples. Similarly, antiviral effects could be determined as shown for anti-poxviral agents ST-246 and Cidofovir. Published values for the in vitro concentration that inhibited virus replication by 50% (IC₅₀) could be confirmed while cytotoxicity in effective concentrations was excluded in long-term incubation experiments. Finally, an RT-CES-based virus neutralization test was established. Various poxvirus-specific antibodies were examined for their neutralizing activity and a calculation mode for the neutralizing antibody titer was introduced. In summary, the presented RT-CES-based methods outmatch end-point assays by observing the cell population throughout the entire experiment while workload and time to result are reduced.
Clinical Infectious Diseases | 2012
Tamara K. Dzagurova; Peter T. Witkowski; Evgeniy A. Tkachenko; Boris Klempa; Vyacheslav G. Morozov; Brita Auste; Dmitriy L. Zavora; Iulia V. Iunicheva; Elena S. Mutnih; Detlev H. Krüger
Sochi virus, a novel genetic variant of Dobrava-Belgrade virus, was isolated in cell culture from a fulminant lethal case of hantavirus disease presenting with shock and combined kidney and lung failure. Sochi virus is transmitted to humans from host reservoir Apodemus ponticus and must be considered a life-threatening emerging agent.
PLOS ONE | 2012
Elena Popugaeva; Peter T. Witkowski; Mathias Schlegel; Rainer G. Ulrich; Brita Auste; Andreas Rang; Detlev H. Krüger; Boris Klempa
Background Dobrava-Belgrade virus (DOBV) is a European hantavirus causing hemorrhagic fever with renal syndrome (HFRS) in humans with fatality rates of up to 12%. DOBV-associated clinical cases typically occur also in the northern part of Germany where the virus is carried by the striped field mouse (Apodemus agrarius). However, the causative agent responsible for human illness has not been previously isolated. Methodology/Principal Findings Here we report on characterization of a novel cell culture isolate from Germany obtained from a lung tissue of “spillover” infected yellow necked mouse (A. flavicollis) trapped near the city of Greifswald. Phylogenetic analyses demonstrated close clustering of the new strain, designated Greifswald/Aa (GRW/Aa) with the nucleotide sequence obtained from a northern German HFRS patient. The virus was effectively blocked by specific antibodies directed against β3 integrins and Decay Accelerating Factor (DAF) indicating that the virus uses same receptors as the highly pathogenic Hantaan virus (HTNV). In addition, activation of selected innate immunity markers as interferon β and λ and antiviral protein MxA after viral infection of A549 cells was investigated and showed that the virus modulates the first-line antiviral response in a similar way as HTNV. Conclusions/Significance In summary, our study reveals novel data on DOBV receptor usage and innate immunity induction in relationship to virus pathogenicity and underlines the potency of German DOBV strains to act as human pathogen.
Infection, Genetics and Evolution | 2016
Peter T. Witkowski; Jan Felix Drexler; René Kallies; Martina Ličková; Silvia Bokorová; Gael D. Mananga; Tomáš Szemes; Eric Leroy; Detlev H. Krüger; Christian Drosten; Boris Klempa
Until recently, hantaviruses (family Bunyaviridae) were believed to originate from rodent reservoirs. However, genetically distinct hantaviruses were lately found in shrews and moles, as well as in bats from Africa and Asia. Bats (order Chiroptera) are considered important reservoir hosts for emerging human pathogens. Here, we report on the identification of a novel hantavirus, provisionally named Makokou virus (MAKV), in Noacks Roundleaf Bat (Hipposideros ruber) in Gabon, Central Africa. Phylogenetic analysis of the genomic l-segment showed that MAKV was the most closely related to other bat-borne hantaviruses and shared a most recent common ancestor with the Asian hantaviruses Xuan Son and Laibin. Breakdown of the virus load in a bat animal showed that MAKV resembles rodent-borne hantaviruses in its organ distribution in that it predominantly occurred in the spleen and kidney; this provides a first insight into the infection pattern of bat-borne hantaviruses. Ancestral state reconstruction based on a tree of l gene sequences of all relevant hantavirus lineages was combined with phylogenetic fossil host hypothesis testing, leading to a statistically significant rejection of the mammalian superorder Euarchontoglires (including rodents) but not the superorder Laurasiatheria (including shrews, moles, and bats) as potential hosts of ancestral hantaviruses at most basal tree nodes. Our data supports the emerging concept of bats as previously overlooked hantavirus reservoir hosts.
Emerging Infectious Diseases | 2015
Detlev H. Krüger; Evgeniy A. Tkachenko; Vyacheslav G. Morozov; Yulia V. Yunicheva; Olga M. Pilikova; Gennadiy Malkin; Aydar A. Ishmukhametov; Patrick Heinemann; Peter T. Witkowski; Boris Klempa; Tamara K. Dzagurova
Sochi virus was recently identified as a new hantavirus genotype carried by the Black Sea field mouse, Apodemus ponticus. We evaluated 62 patients in Russia with Sochi virus infection. Most clinical cases were severe, and the case-fatality rate was as high as 14.5%.
Journal of General Virology | 2015
Lidija Kobak; Martin J. Raftery; Sebastian Voigt; Anja A. Kühl; Ergin Kilic; Andreas Kurth; Peter T. Witkowski; Jörg Hofmann; Andreas Nitsche; Lars Schaade; Detlev H. Krüger; Günther Schönrich
Hantaviruses are emerging zoonotic pathogens that can cause severe disease in humans. Clinical observations suggest that human immune components contribute to hantavirus-induced pathology. To address this issue we generated mice with a humanized immune system. Hantavirus infection of these animals resulted in systemic infection associated with weight loss, decreased activity, ruffled fur and inflammatory infiltrates of lung tissue. Intriguingly, after infection, humanized mice harbouring human leukocyte antigen (HLA) class I-restricted human CD8+ T cells started to lose weight earlier (day 10) than HLA class I-negative humanized mice (day 15). Moreover, in these mice the number of human platelets dropped by 77 % whereas the number of murine platelets did not change, illustrating how differences between rodent and human haemato-lymphoid systems may contribute to disease development. To our knowledge this is the first description of a humanized mouse model of hantavirus infection, and our results indicate a role for human immune cells in hantaviral pathogenesis.
Virology | 2008
Nadine Griesche; Dimitrios Zikos; Peter T. Witkowski; Andreas Nitsche; Heinz Ellerbrok; O. Brad Spiller; Georg Pauli; Barbara Biere
Human adenoviruses (hAdV) have been recognized as a highly prevalent virus family causing severe disease in immunocompromised patients. In xenotransplantation the xenograft therefore will be exposed to these viruses, which in case of its infection might contribute to posttransplant complications. To evaluate the susceptibility of porcine cells for hAdV, we infected the porcine cell line POEK with seven serotypes representing all six hAdV species. Additionally, a second porcine cell line (ST) was infected with two serotypes. Viral replication of serotypes varied: porcine cells were fully permissive for serotypes 1, 4 and 17, semi-permissive for 11 and 21, and non-permissive for 31 and 40. Furthermore, we demonstrated the interaction of serotype 1 with the porcine homologue of the coxsackie-adenovirus receptor, the receptor used by many hAdV serotypes for cell attachment. Thus, various adenovirus types of different hAdV species may be capable of infecting different porcine tissue types.
Emerging Infectious Diseases | 2015
Leonce Kouadio; Kathrin Nowak; Chantal Akoua-Koffi; Sabrina Weiss; Bernard Allali; Peter T. Witkowski; Detlev H. Krüger; Emmanuel Couacy-Hymann; Sébastien Calvignac-Spencer; Fabian H. Leendertz
vaccine effectiveness is 92% for persons who received 1 dose and 95% for those who received 2 doses (9). Assuming that vaccine effectiveness is lower shifts the curve (Figure) to the left and would result in a lower estimate of vaccination coverage. Second, different numbers of persons who received 1 and 2 doses complicate the identifi cation of overall vaccine effectiveness. Third, vaccination status is unknown for some measles case-patients. The proportion of nonvaccinated persons among those casepatients might be higher than that among those known to be vaccinated, also leading to a lower estimate of vaccination coverage. Finally, nonvaccinated persons might be clustered together, and their risk for infection could be higher than that for the general population (10). This scenario would imply that the estimated vaccination coverage does not reflect the general population but instead corresponds to a clustered subpopulation among whom vaccination rates are lower. The effects of these complexities warrant further investigation. However, as the examples demonstrate, a model ignoring those effects is in good agreement with empirical data. Our analysis suggests that the number of vaccinated measles case-patients should be closely followed through surveillance programs. A continuous decrease in the proportion of measles case-patients who had been vaccinated over the years could indicate a decrease in vaccination rates. Conversely, an increase in the proportion of measles casepatients who had been vaccinated would demonstrate the effectiveness of ongoing efforts to increase vaccination rates and could serve as a benchmark toward measles elimination.