Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter T. Wright is active.

Publication


Featured researches published by Peter T. Wright.


Circulation | 2012

High Levels of Circulating Epinephrine Trigger Apical Cardiodepression in a β2-Adrenergic Receptor/Gi–Dependent Manner

Helen Paur; Peter T. Wright; Markus B. Sikkel; Matthew H. Tranter; Catherine Mansfield; Peter O'Gara; Daniel J. Stuckey; Viacheslav O. Nikolaev; Ivan Diakonov; Laura Pannell; Haibin Gong; Hong Sun; Nicholas S. Peters; Mario Petrou; Zhaolun Zheng; Julia Gorelik; Alexander R. Lyon; Sian E. Harding

Background— Takotsubo cardiomyopathy is an acute heart failure syndrome characterized by myocardial hypocontractility from the mid left ventricle to the apex. It is precipitated by extreme stress and can be triggered by intravenous catecholamine administration, particularly epinephrine. Despite its grave presentation, Takotsubo cardiomyopathy is rapidly reversible, with generally good prognosis. We hypothesized that this represents switching of epinephrine signaling through the pleiotropic &bgr;2-adrenergic receptor (&bgr;2AR) from canonical stimulatory G-protein–activated cardiostimulant to inhibitory G-protein–activated cardiodepressant pathways. Methods and Results— We describe an in vivo rat model in which a high intravenous epinephrine, but not norepinephrine, bolus produces the characteristic reversible apical depression of myocardial contraction coupled with basal hypercontractility. The effect is prevented via Gi inactivation by pertussis toxin pretreatment. &bgr;2AR number and functional responses were greater in isolated apical cardiomyocytes than in basal cardiomyocytes, which confirmed the higher apical sensitivity and response to circulating epinephrine. In vitro studies demonstrated high-dose epinephrine can induce direct cardiomyocyte cardiodepression and cardioprotection in a &bgr;2AR-Gi–dependent manner. Preventing epinephrine-Gi effects increased mortality in the Takotsubo model, whereas &bgr;-blockers that activate &bgr;2AR-Gi exacerbated the epinephrine-dependent negative inotropic effects without further deaths. In contrast, levosimendan rescued the acute cardiac dysfunction without increased mortality. Conclusions— We suggest that biased agonism of epinephrine for &bgr;2AR-Gs at low concentrations and for Gi at high concentrations underpins the acute apical cardiodepression observed in Takotsubo cardiomyopathy, with an apical-basal gradient in &bgr;2ARs explaining the differential regional responses. We suggest this epinephrine-specific &bgr;2AR-Gi signaling may have evolved as a cardioprotective strategy to limit catecholamine-induced myocardial toxicity during acute stress.


Circulation | 2012

High levels of circulating epinephrine trigger apical cardiodepression in a β2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy.

Helen Paur; Peter T. Wright; Markus B. Sikkel; Matthew H. Tranter; Catherine Mansfield; Peter O'Gara; Daniel J. Stuckey; Viacheslav O. Nikolaev; Ivan Diakonov; Laura Pannell; Haibin Gong; Hong Sun; Nicholas S. Peters; Mario Petrou; Zhaolun Zheng; Julia Gorelik; Alexander R. Lyon; Sian E. Harding

Background— Takotsubo cardiomyopathy is an acute heart failure syndrome characterized by myocardial hypocontractility from the mid left ventricle to the apex. It is precipitated by extreme stress and can be triggered by intravenous catecholamine administration, particularly epinephrine. Despite its grave presentation, Takotsubo cardiomyopathy is rapidly reversible, with generally good prognosis. We hypothesized that this represents switching of epinephrine signaling through the pleiotropic &bgr;2-adrenergic receptor (&bgr;2AR) from canonical stimulatory G-protein–activated cardiostimulant to inhibitory G-protein–activated cardiodepressant pathways. Methods and Results— We describe an in vivo rat model in which a high intravenous epinephrine, but not norepinephrine, bolus produces the characteristic reversible apical depression of myocardial contraction coupled with basal hypercontractility. The effect is prevented via Gi inactivation by pertussis toxin pretreatment. &bgr;2AR number and functional responses were greater in isolated apical cardiomyocytes than in basal cardiomyocytes, which confirmed the higher apical sensitivity and response to circulating epinephrine. In vitro studies demonstrated high-dose epinephrine can induce direct cardiomyocyte cardiodepression and cardioprotection in a &bgr;2AR-Gi–dependent manner. Preventing epinephrine-Gi effects increased mortality in the Takotsubo model, whereas &bgr;-blockers that activate &bgr;2AR-Gi exacerbated the epinephrine-dependent negative inotropic effects without further deaths. In contrast, levosimendan rescued the acute cardiac dysfunction without increased mortality. Conclusions— We suggest that biased agonism of epinephrine for &bgr;2AR-Gs at low concentrations and for Gi at high concentrations underpins the acute apical cardiodepression observed in Takotsubo cardiomyopathy, with an apical-basal gradient in &bgr;2ARs explaining the differential regional responses. We suggest this epinephrine-specific &bgr;2AR-Gi signaling may have evolved as a cardioprotective strategy to limit catecholamine-induced myocardial toxicity during acute stress.


Journal of Molecular and Cellular Cardiology | 2014

Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling.

Peter T. Wright; Viacheslav O. Nikolaev; Thomas O'Hara; Ivan Diakonov; Anamika Bhargava; Sergiy Tokar; Sophie Schobesberger; Andrew I. Shevchuk; Markus B. Sikkel; Ross Wilkinson; Natalia A. Trayanova; Alexander R. Lyon; Sian E. Harding; Julia Gorelik

The purpose of this study was to investigate whether caveolin-3 (Cav3) regulates localization of β2-adrenergic receptor (β2AR) and its cAMP signaling in healthy or failing cardiomyocytes. We co-expressed wildtype Cav3 or its dominant-negative mutant (Cav3DN) together with the Förster resonance energy transfer (FRET)-based cAMP sensor Epac2-camps in adult rat ventricular myocytes (ARVMs). FRET and scanning ion conductance microscopy were used to locally stimulate β2AR and to measure cytosolic cAMP. Cav3 overexpression increased the number of caveolae and decreased the magnitude of β2AR-cAMP signal. Conversely, Cav3DN expression resulted in an increased β2AR-cAMP response without altering the whole-cell L-type calcium current. Following local stimulation of Cav3DN-expressing ARVMs, β2AR response could only be generated in T-tubules. However, the normally compartmentalized β2AR-cAMP signal became diffuse, similar to the situation observed in heart failure. Finally, overexpression of Cav3 in failing myocytes led to partial β2AR redistribution back into the T-tubules. In conclusion, Cav3 plays a crucial role for the localization of β2AR and compartmentation of β2AR-cAMP signaling to the T-tubules of healthy ARVMs, and overexpression of Cav3 in failing myocytes can partially restore the disrupted localization of these receptors.


Cardiovascular Research | 2013

Spatial control of the βAR system in heart failure: the transverse tubule and beyond

Julia Gorelik; Peter T. Wright; Alexander R. Lyon; Sian E. Harding

The beta1-adrenoceptors (β(1)AR) and beta-2 (β(2)AR) adrenoceptors represent the predominant pathway for sympathetic control of myocardial function. Diverse mechanisms have evolved to translate signalling via these two molecules into differential effects on physiology. In this review, we discuss how the functions of the βAR are organized from the level of secondary messengers to the whole heart to achieve this. Using novel microscopy and bio-imaging methods researchers have uncovered subtle organization of the control of cyclic adenosine monophosphate (cAMP), the predominant positively inotropic pathway for the βAR. The β(2)AR in particular is demonstrated to give rise to highly compartmentalized, spatially confined cAMP signals. Organization of β(2)AR within the T-tubule and caveolae of cardiomyocytes concentrates this receptor with molecules which buffer and shape its cAMP signal to give fine control. This situation is undermined in various forms of heart failure. Human and animal models of heart failure demonstrate disruption of cellular micro-architecture which contributes to the change in response to cardiac βARs. Loss of cellular structure has proved key to the observed loss of confined β(2)AR signalling. Some pharmacological and genetic treatments have been successful in returning failing cells to a more structured phenotype. Within these cells it has been possible to observe the partial restoration of normal β(2)AR signalling. At the level of the organ, the expression of the two βAR subtypes varies between regions with the β(2)AR forming a greater proportion of the βAR population at the apex. This distribution may contribute to regional wall motion abnormalities in Takotsubo cardiomyopathy, a syndrome of high sympathetic activity, where the phosphorylated β(2)AR can signal via Gi protein to produce negatively inotropic effects.


American Journal of Physiology-heart and Circulatory Physiology | 2013

The scanning ion conductance microscope for cellular physiology

Max J. Lab; Anamika Bhargava; Peter T. Wright; Julia Gorelik

The quest for nonoptical imaging methods that can surmount light diffraction limits resulted in the development of scanning probe microscopes. However, most of the existing methods are not quite suitable for studying biological samples. The scanning ion conductance microscope (SICM) bridges the gap between the resolution capabilities of atomic force microscope and scanning electron microscope and functional capabilities of conventional light microscope. A nanopipette mounted on a three-axis piezo-actuator, scans a sample of interest and ion current is measured between the pipette tip and the sample. The feedback control system always keeps a certain distance between the sample and the pipette so the pipette never touches the sample. At the same time pipette movement is recorded and this generates a three-dimensional topographical image of the sample surface. SICM represents an alternative to conventional high-resolution microscopy, especially in imaging topography of live biological samples. In addition, the nanopipette probe provides a host of added modalities, for example using the same pipette and feedback control for efficient approach and seal with the cell membrane for ion channel recording. SICM can be combined in one instrument with optical and fluorescent methods and allows drawing structure-function correlations. It can also be used for precise mechanical force measurements as well as vehicle to apply pressure with precision. This can be done on living cells and tissues for prolonged periods of time without them loosing viability. The SICM is a multifunctional instrument, and it is maturing rapidly and will open even more possibilities in the near future.


Nature Communications | 2017

FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility.

Nicoletta C. Surdo; Marco Berrera; Andreas Koschinski; Marcella Brescia; Matías R. Machado; Carolyn A. Carr; Peter T. Wright; Julia Gorelik; Stefano Morotti; Eleonora Grandi; Donald M. Bers; Sergio Pantano; Manuela Zaccolo

Compartmentalized cAMP/PKA signalling is now recognized as important for physiology and pathophysiology, yet a detailed understanding of the properties, regulation and function of local cAMP/PKA signals is lacking. Here we present a fluorescence resonance energy transfer (FRET)-based sensor, CUTie, which detects compartmentalized cAMP with unprecedented accuracy. CUTie, targeted to specific multiprotein complexes at discrete plasmalemmal, sarcoplasmic reticular and myofilament sites, reveals differential kinetics and amplitudes of localized cAMP signals. This nanoscopic heterogeneity of cAMP signals is necessary to optimize cardiac contractility upon adrenergic activation. At low adrenergic levels, and those mimicking heart failure, differential local cAMP responses are exacerbated, with near abolition of cAMP signalling at certain locations. This work provides tools and fundamental mechanistic insights into subcellular adrenergic signalling in normal and pathological cardiac function.


Cell Reports | 2016

Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes

Michele Miragoli; Jose L. Sanchez-Alonso; Anamika Bhargava; Peter T. Wright; Markus B. Sikkel; Sophie Schobesberger; Ivan Diakonov; Pavel Novak; Alessandra Castaldi; Paola Cattaneo; Alexander R. Lyon; Max J. Lab; Julia Gorelik

Summary Arrhythmogenesis during heart failure is a major clinical problem. Regional electrical gradients produce arrhythmias, and cellular ionic transmembrane gradients are its originators. We investigated whether the nanoscale mechanosensitive properties of cardiomyocytes from failing hearts have a bearing upon the initiation of abnormal electrical activity. Hydrojets through a nanopipette indent specific locations on the sarcolemma and initiate intracellular calcium release in both healthy and heart failure cardiomyocytes, as well as in human failing cardiomyocytes. In healthy cells, calcium is locally confined, whereas in failing cardiomyocytes, calcium propagates. Heart failure progressively stiffens the membrane and displaces sub-sarcolemmal mitochondria. Colchicine in healthy cells mimics the failing condition by stiffening the cells, disrupting microtubules, shifting mitochondria, and causing calcium release. Uncoupling the mitochondrial proton gradient abolished calcium initiation in both failing and colchicine-treated cells. We propose the disruption of microtubule-dependent mitochondrial mechanosensor microdomains as a mechanism for abnormal calcium release in failing heart.


Heart Failure Clinics | 2013

Takotsubo Cardiomyopathy : The Pathophysiology

Matthew H. Tranter; Peter T. Wright; Markus B. Sikkel; Alexander R. Lyon

Takotsubo cardiomyopathy (TTC) is an acute heart failure syndrome classically characterized by hypocontractile apical and midventricular regions of the left ventricle, with a compensatory hypercontractile base. Available data support the hypothesis that TTC and atypical TTC-like disorders are primarily induced by catecholaminergic overstimulation, with epinephrine playing a crucial role. Knowledge from the available preclinical models should be used to guide the development of potential clinical trials in the most severe cases, where rates of acute morbidity and mortality are highest, and also to prevent recurrence in susceptible individuals.


Cardiovascular Research | 2017

T-tubule remodelling disturbs localized β2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure

Sophie Schobesberger; Peter T. Wright; Sergiy Tokar; Anamika Bhargava; Catherine Mansfield; Alexey V. Glukhov; Claire Poulet; Andrey Buzuk; Aron Monszpart; Markus B. Sikkel; Sian E. Harding; Viacheslav O. Nikolaev; Alexander R. Lyon; Julia Gorelik

Aims Cardiomyocyte β2-adrenergic receptor (β2AR) cyclic adenosine monophosphate (cAMP) signalling is regulated by the receptors’ subcellular location within transverse tubules (T-tubules), via interaction with structural and regulatory proteins, which form a signalosome. In chronic heart failure (HF), β2ARs redistribute from T-tubules to the cell surface, which disrupts functional signalosomes and leads to diffuse cAMP signalling. However, the functional consequences of structural changes upon β2AR-cAMP signalling during progression from hypertrophy to advanced HF are unknown. Methods and results Rat left ventricular myocytes were isolated at 4-, 8-, and 16-week post-myocardial infarction (MI), β2ARs were stimulated either via whole-cell perfusion or locally through the nanopipette of the scanning ion conductance microscope. cAMP release was measured via a Förster Resonance Energy Transfer-based sensor Epac2-camps. Confocal imaging of di-8-ANNEPS-stained cells and immunoblotting were used to determine structural alterations. At 4-week post-MI, T-tubule regularity, density and junctophilin-2 (JPH2) expression were significantly decreased. The amplitude of local β2AR-mediated cAMP in T-tubules was reduced and cAMP diffused throughout the cytosol instead of being locally confined. This was accompanied by partial caveolin-3 (Cav-3) dissociation from the membrane. At 8-week post-MI, the β2AR-mediated cAMP response was observed at the T-tubules and the sarcolemma (crest). Finally, at 16-week post-MI, the whole cell β2AR-mediated cAMP signal was depressed due to adenylate cyclase dysfunction, while overall Cav-3 levels were significantly increased and a substantial portion of Cav-3 dissociated into the cytosol. Overexpression of JPH2 in failing cells in vitro or AAV9.SERCA2a gene therapy in vivo did not improve β2AR-mediated signal compartmentation or reduce cAMP diffusion. Conclusion Although changes in T-tubule structure and β2AR-mediated cAMP signalling are significant even at 4-week post-MI, progression to the HF phenotype is not linear. At 8-week post-MI the loss of β2AR-mediated cAMP is temporarily reversed. Complete disorganization of β2AR-mediated cAMP signalling due to changes in functional receptor localization and cellular structure occurs at 16-week post-MI.


Circulation | 2012

High Levels of Circulating Epinephrine Trigger Apical Cardiodepression in a β2-Adrenoceptor/Gi-Dependent Manner: A New Model of Takotsubo Cardiomyopathy

Helen Paur; Peter T. Wright; Markus B. Sikkel; Matthew H. Tranter; Catherine Mansfield; Peter O'Gara; Daniel J. Stuckey; Viacheslav O. Nikolaev; Ivan Diakonov; Laura Pannell; Haibin Gong; Hong Sun; Nicholas S. Peters; Mario Petrou; Zhaolun Zheng; Julia Gorelik; Alexander R. Lyon; Sian E. Harding

Background— Takotsubo cardiomyopathy is an acute heart failure syndrome characterized by myocardial hypocontractility from the mid left ventricle to the apex. It is precipitated by extreme stress and can be triggered by intravenous catecholamine administration, particularly epinephrine. Despite its grave presentation, Takotsubo cardiomyopathy is rapidly reversible, with generally good prognosis. We hypothesized that this represents switching of epinephrine signaling through the pleiotropic &bgr;2-adrenergic receptor (&bgr;2AR) from canonical stimulatory G-protein–activated cardiostimulant to inhibitory G-protein–activated cardiodepressant pathways. Methods and Results— We describe an in vivo rat model in which a high intravenous epinephrine, but not norepinephrine, bolus produces the characteristic reversible apical depression of myocardial contraction coupled with basal hypercontractility. The effect is prevented via Gi inactivation by pertussis toxin pretreatment. &bgr;2AR number and functional responses were greater in isolated apical cardiomyocytes than in basal cardiomyocytes, which confirmed the higher apical sensitivity and response to circulating epinephrine. In vitro studies demonstrated high-dose epinephrine can induce direct cardiomyocyte cardiodepression and cardioprotection in a &bgr;2AR-Gi–dependent manner. Preventing epinephrine-Gi effects increased mortality in the Takotsubo model, whereas &bgr;-blockers that activate &bgr;2AR-Gi exacerbated the epinephrine-dependent negative inotropic effects without further deaths. In contrast, levosimendan rescued the acute cardiac dysfunction without increased mortality. Conclusions— We suggest that biased agonism of epinephrine for &bgr;2AR-Gs at low concentrations and for Gi at high concentrations underpins the acute apical cardiodepression observed in Takotsubo cardiomyopathy, with an apical-basal gradient in &bgr;2ARs explaining the differential regional responses. We suggest this epinephrine-specific &bgr;2AR-Gi signaling may have evolved as a cardioprotective strategy to limit catecholamine-induced myocardial toxicity during acute stress.

Collaboration


Dive into the Peter T. Wright's collaboration.

Top Co-Authors

Avatar

Alexander R. Lyon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julia Gorelik

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sian E. Harding

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Markus B. Sikkel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Matthew H. Tranter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Diakonov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laura Pannell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sophie Schobesberger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter O'Gara

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge