Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Thériault is active.

Publication


Featured researches published by Peter Thériault.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology

Jean-Philippe Michaud; Maxime Hallé; Antoine Lampron; Peter Thériault; Paul Préfontaine; Mohammed Filali; Pascale Tribout-Jover; Anne-Marie Lanteigne; Rachel Jodoin; Christopher Cluff; Vincent Brichard; Remi Palmantier; Anthony Pilorget; Daniel Larocque; Serge Rivest

Alzheimer’s disease (AD) is the most common cause of dementia worldwide. The pathogenesis of this neurodegenerative disease, currently without curative treatment, is associated with the accumulation of amyloid β (Aβ) in brain parenchyma and cerebral vasculature. AD patients are unable to clear this toxic peptide, leading to Aβ accumulation in their brains and, presumably, the pathology associated with this devastating disease. Compounds that stimulate the immune system to clear Aβ may therefore have great therapeutic potential in AD patients. Monophosphoryl lipid A (MPL) is an LPS-derived Toll-like receptor 4 agonist that exhibits unique immunomodulatory properties at doses that are nonpyrogenic. We show here that repeated systemic injections of MPL, but not LPS, significantly improved AD-related pathology in APPswe/PS1 mice. MPL treatment led to a significant reduction in Aβ load in the brain of these mice, as well as enhanced cognitive function. MPL induced a potent phagocytic response by microglia while triggering a moderate inflammatory reaction. Our data suggest that the Toll-like receptor 4 agonist MPL may be a treatment for AD.


Behavioural Brain Research | 2012

Cognitive and non-cognitive behaviors in the triple transgenic mouse model of Alzheimer's disease expressing mutated APP, PS1, and Mapt (3xTg-AD).

Mohammed Filali; Robert Lalonde; Peter Thériault; Carl Julien; Frédéric Calon; Emmanuel Planel

3xTg-AD mutant mice are characterized by parenchymal Aβ plaques and neurofibrillary tangles resembling those found in patients with Alzheimers disease. The mutants were compared with non-transgenic controls in sensorimotor and learning tests. 3xTg-AD mutants were deficient in T-maze reversal, object recognition, and passive avoidance learning. In addition, the mutants showed hypoactivity in two open-field tests, fewer fecal boli in an observation jar, and reduced enclosed arm entries and head-dipping in the elevated plus-maze. On the contrary, the mutants did not differ from controls in pain thresholds, nest-building, and various reflexes determined by the SHIRPA primary screen and were even better on the rotorod test of motor coordination.


Alzheimer's Research & Therapy | 2015

The dynamics of monocytes and microglia in Alzheimer’s disease

Peter Thériault; Ayman ElAli; Serge Rivest

Alzheimer’s disease (AD) is the most common neurodegenerative disorder affecting older people worldwide. It is a progressive disorder mainly characterized by the presence of amyloid-beta (Aβ) plaques and neurofibrillary tangles within the brain parenchyma. It is now well accepted that neuroinflammation constitutes an important feature in AD, wherein the exact role of innate immunity remains unclear. Although innate immune cells are at the forefront to protect the brain in the presence of toxic molecules including Aβ, this natural defense mechanism seems insufficient in AD patients. Monocytes are a key component of the innate immune system and they play multiple roles, such as the removal of debris and dead cells via phagocytosis. These cells respond quickly and mobilize toward the inflamed site, where they proliferate and differentiate into macrophages in response to inflammatory signals. Many studies have underlined the ability of circulating and infiltrating monocytes to clear vascular Aβ microaggregates and parenchymal Aβ deposits respectively, which are very important features of AD. On the other hand, microglia are the resident immune cells of the brain and they play multiple physiological roles, including maintenance of the brain’s microenvironment homeostasis. In the injured brain, activated microglia migrate to the inflamed site, where they remove neurotoxic elements by phagocytosis. However, aged resident microglia are less efficient than their circulating sister immune cells in eliminating Aβ deposits from the brain parenchyma, thus underlining the importance to further investigate the functions of these innate immune cells in AD. The present review summarizes current knowledge on the role of monocytes and microglia in AD and how these cells can be mobilized to prevent and treat the disease.


International Journal of Molecular Sciences | 2014

The Role of Pericytes in Neurovascular Unit Remodeling in Brain Disorders

Ayman ElAli; Peter Thériault; Serge Rivest

Neurons are extremely vulnerable cells that tightly rely on the brain’s highly dynamic and complex vascular network that assures an accurate and adequate distribution of nutrients and oxygen. The neurovascular unit (NVU) couples neuronal activity to vascular function, controls brain homeostasis, and maintains an optimal brain microenvironment adequate for neuronal survival by adjusting blood-brain barrier (BBB) parameters based on brain needs. The NVU is a heterogeneous structure constituted by different cell types that includes pericytes. Pericytes are localized at the abluminal side of brain microvessels and contribute to NVU function. Pericytes play essential roles in the development and maturation of the neurovascular system during embryogenesis and stability during adulthood. Initially, pericytes were described as contractile cells involved in controlling neurovascular tone. However, recent reports have shown that pericytes dynamically respond to stress induced by injury upon brain diseases, by chemically and physically communicating with neighboring cells, by their immune properties and by their potential pluripotent nature within the neurovascular niche. As such, in this paper, we would like to review the role of pericytes in NVU remodeling, and their potential as targets for NVU repair strategies and consequently neuroprotection in two pathophysiologically distinct brain disorders: ischemic stroke and Alzheimer’s disease (AD).


Oncotarget | 2016

High fat diet exacerbates Alzheimer’s disease-related pathology in APPswe/PS1 mice

Peter Thériault; Ayman ElAli; Serge Rivest

Alzheimers disease (AD) is mainly characterized by the accumulation and aggregation of amyloid-β (Aβ) peptides in brain parenchyma and cerebral microvasculature. Unfortunately, the exact causes of the disease are still unclear. However, blood-brain barrier (BBB) dysfunction and activation of inflammatory pathways are implicated in AD pathogenesis. Importantly, advanced age and high fat diet, two major risk factors associated with AD, were shown to deeply affect BBB function and modulate the immune response. As such, this study evaluated the impact of age and high fat diet on AD progression. For this purpose, 3 (i.e. young) and 12 (i.e. aged) months old APPswe/PS1 mice were fed for 4 months with a high fat diet (i.e. Western diet (WD)) or normal diet. Interestingly, neurobehavioral tests revealed that WD accelerates age-associated cognitive decline without affecting parenchymal Aβ. Nonetheless, WD decreases matrix metalloproteinase-9 enzymatic activity and brain-derived neurotrophic factor mRNA and protein levels in brain, suggesting loss of synaptic plasticity. In the periphery, WD promotes systemic inflammation by increasing the levels of blood-circulating monocytes and monocyte chemotactic protein-1 production, which is accompanied by an augmentation of oxidized-low density lipoprotein levels in blood circulation. At the BBB, WD potentiates the age-induced increase of Aβ 1-40 accumulation and exacerbates the oxidative stress, specifically in cerebral microvasculature. These effects were accompanied by the dysfunction of pericytes, thus altering BBB functionality without compromising its integrity. Our study provides new insights into the implication of high fat diet in accelerating the cognitive decline in AD.


Neuropsychopharmacology | 2016

Tissue-Plasminogen Activator Attenuates Alzheimer's Disease-Related Pathology Development in APPswe/PS1 Mice.

Ayman ElAli; Maude Bordeleau; Peter Thériault; Mohammed Filali; Antoine Lampron; Serge Rivest

Alzheimer’s disease (AD) is the leading cause of dementia among elderly population. AD is characterized by the accumulation of beta-amyloid (Aβ) peptides, which aggregate over time to form amyloid plaques in the brain. Reducing soluble Aβ levels and consequently amyloid plaques constitute an attractive therapeutic avenue to, at least, stabilize AD pathogenesis. The brain possesses several mechanisms involved in controlling cerebral Aβ levels, among which are the tissue-plasminogen activator (t-PA)/plasmin system and microglia. However, these mechanisms are impaired and ineffective in AD. Here we show that the systemic chronic administration of recombinant t-PA (Activase rt-PA) attenuates AD-related pathology in APPswe/PS1 transgenic mice by reducing cerebral Aβ levels and improving the cognitive function of treated mice. Interestingly, these effects do not appear to be mediated by rt-PA-induced plasmin and matrix metalloproteinases 2/9 activation. We observed that rt-PA essentially mediated a slight transient increase in the frequency of patrolling monocytes in the circulation and stimulated microglia in the brain to adopt a neuroprotective phenotype, both of which contribute to Aβ elimination. Our study unraveled a new role of rt-PA in maintaining the phagocytic capacity of microglia without exacerbating the inflammatory response and therefore might constitute an interesting approach to stimulate the key populations of cells involved in Aβ clearance from the brain.


Oncotarget | 2016

Sub-acute systemic erythropoietin administration reduces ischemic brain injury in an age-dependent manner

Peter Thériault; Audrey Le Béhot; Ayman ElAli; Serge Rivest

Stroke is associated with neuroinflammation, neuronal loss and blood-brain barrier (BBB) breakdown. Thus far, recombinant tissue-type plasminogen activator (rtPA), the only approved treatment for acute ischemic stroke, increases the risk of intracerebral hemorrhage and is poorly efficient in disaggregating platelet-rich thrombi. Therefore, the development of safer and more efficient therapies is highly awaited. Encouraging neuroprotective effects were reported in mouse models of ischemic stroke following administration of erythropoietin (EPO). However, previous preclinical studies did not investigate the effects of EPO in focal ischemic stroke induced by a platelet-rich thrombus and did not consider the implication of age. Here, we performed middle cerebral artery occlusion by inducing platelet-rich thrombus formation in chimeric 5- (i.e. young) and 20- (i.e. aged) months old C57BL/6 mice, in which hematopoietic stem cells carried the green fluorescent protein (GFP)-tag. Recombinant human EPO (rhEPO) was administered 24 hours post-occlusion and blood-circulating monocyte populations were studied by flow cytometry 3 hours post-rhEPO administration. Twenty-four hours following rhEPO treatment, neuronal loss and BBB integrity were assessed by quantification of Fluoro-Jade B (FJB)-positive cells and extravasated serum immunoglobulins G (IgG), respectively. Neuroinflammation was determined by quantifying infiltration of GFP-positive bone marrow-derived cells (BMDC) and recruitment of microglial cells into brain parenchyma, along with monocyte chemotactic protein-1 (MCP-1) brain protein levels. Here, rhEPO anti-inflammatory properties rescued ischemic injury by reducing neuronal loss and BBB breakdown in young animals, but not in aged littermates. Such age-dependent effects of rhEPO must therefore be taken into consideration in future studies aiming to develop new therapies for ischemic stroke.


Current Biology | 2016

Microglia: Senescence Impairs Clearance of Myelin Debris

Peter Thériault; Serge Rivest

Growing evidence highlights the crucial physiological functions of microglia that rely on their phagocytic activities, which can be compromised with age. A new study reports the impaired clearance of myelin debris by microglia in the brain, leading to insoluble lysosomal inclusions and contributing to the immune dysfunction and senescence of these cells.


Acta neuropathologica communications | 2013

Mild chronic cerebral hypoperfusion induces neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation.

Ayman ElAli; Peter Thériault; Paul Préfontaine; Serge Rivest


Cell Reports | 2017

Triggering of NOD2 Receptor Converts Inflammatory Ly6Chigh into Ly6Clow Monocytes with Patrolling Properties

Anne-Julie Lessard; Manon Lebel; Benoit Egarnes; Paul Préfontaine; Peter Thériault; Arnaud Droit; Alexandre Brunet; Serge Rivest; Jean Gosselin

Collaboration


Dive into the Peter Thériault's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge