Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Traxler is active.

Publication


Featured researches published by Peter Traxler.


Cancer Research | 2004

AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity.

Peter Traxler; Peter R. Allegrini; Ralf Brandt; Josef Brueggen; Robert Cozens; Doriano Fabbro; Konstantina Grosios; Heidi Lane; Paul M.J. McSheehy; Juergen Mestan; Thomas J. Meyer; Careen Tang; Markus Wartmann; Jeanette Marjorie Wood; Giorgio Caravatti

Aberrant epidermal growth factor receptor (EGFR) and ErbB2 expression are associated with advanced disease and poor patient prognosis in many tumor types (breast, lung, ovarian, prostate, glioma, gastric, and squamous carcinoma of head and neck). In addition, a constitutively active EGFR type III deletion mutant has been identified in non-small cell lung cancer, glioblastomas, and breast tumors. Hence, members of the EGFR family are viewed as promising therapeutic targets in the fight against cancer. In a similar vein, vascular endothelial growth factor (VEGF) receptor kinases are also promising targets in terms of an antiangiogenic treatment strategy. AEE788, obtained by optimization of the 7H-pyrrolo[2,3-d]pyrimidine lead scaffold, is a potent combined inhibitor of both epidermal growth factor (EGF) and VEGF receptor tyrosine kinase family members on the isolated enzyme level and in cellular systems. At the enzyme level, AEE788 inhibited EGFR and VEGF receptor tyrosine kinases in the nm range (IC(50)s: EGFR 2 nm, ErbB2 6 nm, KDR 77 nm, and Flt-1 59 nm). In cells, growth factor-induced EGFR and ErbB2 phosphorylation was also efficiently inhibited (IC(50)s: 11 and 220 nm, respectively). AEE788 demonstrated antiproliferative activity against a range of EGFR and ErbB2-overexpressing cell lines (including EGFRvIII-dependent lines) and inhibited the proliferation of epidermal growth factor- and VEGF-stimulated human umbilical vein endothelial cells. These properties, combined with a favorable pharmacokinetic profile, were associated with a potent antitumor activity in a number of animal models of cancer, including tumors that overexpress EGFR and or ErbB2. Oral administration of AEE788 to tumor-bearing mice resulted in high and persistent compound levels in tumor tissue. Moreover, AEE788 efficiently inhibited growth factor-induced EGFR and ErbB2 phosphorylation in tumors for >72 h, a phenomenon correlating with the antitumor efficacy of intermittent treatment schedules. Strikingly, AEE788 also inhibited VEGF-induced angiogenesis in a murine implant model. Antiangiogenic activity was also apparent by measurement of tumor vascular permeability and interstitial leakage space using dynamic contrast enhanced magnetic resonance imaging methodology. Taken together, these data indicate that AEE788 has potential as an anticancer agent targeting deregulated tumor cell proliferation as well as angiogenic parameters. Consequently, AEE788 is currently in Phase I clinical trials in oncology.Aberrant epidermal growth factor receptor (EGFR) and ErbB2 expression are associated with advanced disease and poor patient prognosis in many tumor types (breast, lung, ovarian, prostate, glioma, gastric, and squamous carcinoma of head and neck). In addition, a constitutively active EGFR type III deletion mutant has been identified in non-small cell lung cancer, glioblastomas, and breast tumors. Hence, members of the EGFR family are viewed as promising therapeutic targets in the fight against cancer. In a similar vein, vascular endothelial growth factor (VEGF) receptor kinases are also promising targets in terms of an antiangiogenic treatment strategy. AEE788, obtained by optimization of the 7H-pyrrolo[2,3-d]pyrimidine lead scaffold, is a potent combined inhibitor of both epidermal growth factor (EGF) and VEGF receptor tyrosine kinase family members on the isolated enzyme level and in cellular systems. At the enzyme level, AEE788 inhibited EGFR and VEGF receptor tyrosine kinases in the nm range (IC50s: EGFR 2 nm, ErbB2 6 nm, KDR 77 nm, and Flt-1 59 nm). In cells, growth factor-induced EGFR and ErbB2 phosphorylation was also efficiently inhibited (IC50s: 11 and 220 nm, respectively). AEE788 demonstrated antiproliferative activity against a range of EGFR and ErbB2-overexpressing cell lines (including EGFRvIII-dependent lines) and inhibited the proliferation of epidermal growth factor- and VEGF-stimulated human umbilical vein endothelial cells. These properties, combined with a favorable pharmacokinetic profile, were associated with a potent antitumor activity in a number of animal models of cancer, including tumors that overexpress EGFR and or ErbB2. Oral administration of AEE788 to tumor-bearing mice resulted in high and persistent compound levels in tumor tissue. Moreover, AEE788 efficiently inhibited growth factor-induced EGFR and ErbB2 phosphorylation in tumors for >72 h, a phenomenon correlating with the antitumor efficacy of intermittent treatment schedules. Strikingly, AEE788 also inhibited VEGF-induced angiogenesis in a murine implant model. Antiangiogenic activity was also apparent by measurement of tumor vascular permeability and interstitial leakage space using dynamic contrast enhanced magnetic resonance imaging methodology. Taken together, these data indicate that AEE788 has potential as an anticancer agent targeting deregulated tumor cell proliferation as well as angiogenic parameters. Consequently, AEE788 is currently in Phase I clinical trials in oncology.


Pharmacology & Therapeutics | 2002

Protein kinases as targets for anticancer agents: from inhibitors to useful drugs

Doriano Fabbro; Stephan Ruetz; Elisabeth Buchdunger; Sandra W. Cowan-Jacob; Gabriele Fendrich; Janis Liebetanz; Terence O'Reilly; Peter Traxler; Bhabatosh Chaudhuri; Heinz Fretz; Jürg Zimmermann; Thomas Meyer; Giorgio Caravatti; Pascal Furet; Paul W. Manley

Many components of mitogenic signaling pathways in normal and neoplastic cells have been identified, including the large family of protein kinases, which function as components of signal transduction pathways, playing a central role in diverse biological processes, such as control of cell growth, metabolism, differentiation, and apoptosis. The development of selective protein kinase inhibitors that can block or modulate diseases caused by abnormalities in these signaling pathways is widely considered a promising approach for drug development. Because of their deregulation in human cancers, protein kinases, such as Bcr-Abl, those in the epidermal growth factor-receptor (HER) family, the cell cycle regulating kinases such as the cyclin-dependent kinases, as well as the vascular endothelial growth factor-receptor kinases involved in the neo-vascularization of tumors, are among the protein kinases considered as prime targets for the development of selective inhibitors. These drug-discovery efforts have generated inhibitors and low-molecular weight therapeutics directed against the ATP-binding site of various protein kinases that are in various stages of development (up to Phase II/III clinical trials). Three examples of inhibitors of protein kinases are reviewed, including low-molecular weight compounds targeting the cell cycle kinases; a potent and selective inhibitor of the HER1/HER2 receptor tyrosine kinase, the pyrollopyrimidine PKI166; and the 2-phenyl-aminopyrimidine STI571 (Glivec(R), Gleevec) a targeted drug therapy directed toward Bcr-Abl, the key player in chronic leukemia (CML). Some members of the HER family of receptor tyrosine kinases, in particular HER1 and HER2, have been found to be overexpressed in a variety of human tumors, suggesting that inhibition of HER signaling would be a viable antiproliferative strategy. The pyrrolo-pyrimidine PKI166 was developed as an HER1/HER2 inhibitor with potent in vitro antiproliferative and in vivo antitumor activity. Based upon its clear association with disease, the Bcr-Abl tyrosine kinase in CML represents the ideal target to validate the clinical utility of protein kinase inhibitors as therapeutic agents. In a preclinical model, STI571 (Glivec(R), Gleevec) showed potent in vitro and in vivo antitumor activity that was selective for Abl, c-Kit, and the platelet-derived growth factor-receptor. Phase I/II studies demonstrated that STI571 is well tolerated, and that it showed promising hematological and cytogenetic responses in CML and clinical responses in the c-Kit-driven gastrointestinal tumors.


Cancer Research | 2004

Imatinib Mesylate Is a Potent Inhibitor of the ABCG2 (BCRP) Transporter and Reverses Resistance to Topotecan and SN-38 in Vitro

Peter J. Houghton; Glen S. Germain; Franklin C. Harwood; John D. Schuetz; Clinton F. Stewart; Elisabeth Buchdunger; Peter Traxler

Imatinib mesylate (Gleevec, STI571) is a kinase inhibitor selective for Bcr-Abl, activated c-Kit kinases, and platelet-derived growth factor receptor tyrosine kinase. Imatinib mesylate, similar to many other tyrosine kinase inhibitors (TKIs), such as members of the 4-anilinoquinazoline class, competes for ATP binding. Previously, 4-anilinoquinazoline TKIs have been shown to inhibit the function of the breast cancer resistance-associated drug transporter (ABCG2), reversing resistance to camptothecin derivatives topotecan and SN-38. However, the potential to inhibit ABCG2 for the 2-phenylamino-pyrimidine class of TKIs, exemplified by imatinib mesylate, has not been examined. Here, we show that imatinib mesylate potently reverses ABCG2-mediated resistance to topotecan and SN-38 and significantly increases accumulation of topotecan only in cells expressing functional ABCG2. However, overexpression of ABCG2 does not confer resistance to imatinib mesylate. Furthermore, accumulation and efflux of [14C]imatinib mesylate are unaltered between ABCG2-expressing and non-ABCG2-expressing cells or by ATP depletion. These results suggest that imatinib mesylate inhibits the function of ABCG2 but is not a substrate for this transporter.


Pharmacology & Therapeutics | 1999

STRATEGIES TOWARD THE DESIGN OF NOVEL AND SELECTIVE PROTEIN TYROSINE KINASE INHIBITORS

Peter Traxler; Pascal Furet

Protein tyrosine kinases play a fundamental role in signal transduction pathways. Deregulated tyrosine kinase activity has been observed in many proliferative diseases (e.g., cancer, psoriasis, restenosis, etc.). Tyrosine kinases are, therefore, attractive targets for the design of new therapeutic agents against cancer. We have built up a pharmacophore model of the ATP-binding site of the epidermal growth factor receptor (EGFR) kinase and used it for the rational design of kinase inhibitors. Several examples of the successful use of this model are presented in this review. Amongst these, 4-substituted-pyrrolo[2,3-d]pyrimidines, a new class of highly potent and selective inhibitors of the EGFR kinase, have been identified and further optimized. The most active derivatives inhibited the EGFR tyrosine kinase with IC50 values between 1 and 5 nM. In EGF-dependent cellular systems, tyrosine phosphorylation, as well as c-fos mRNA expression, was inhibited with similar IC50 values. Further successful application of this pharmacophore model led to the identification and optimization of phenylamino-pyrazolo[4,3-d]pyrimidines and substituted isoflavones and quinolones, other classes of potent, selective, and ATP competitive EGFR kinase inhibitors with IC50 values in the low nanomolar range. Structure-activity relationships of both classes are discussed.


Expert Opinion on Therapeutic Targets | 2003

Tyrosine kinases as targets in cancer therapy - successes and failures.

Peter Traxler

Protein kinases play a crucial role in signal transduction and also in cellular proliferation, differentiation and various regulatory mechanisms. The inhibition of growth-related kinases, especially tyrosine kinases, might therefore provide new therapies for diseases such as cancer. Due to the enormous progress that has been made in the past few years in the identification of the human genome, in molecular and cell biology technologies, in structural biology and in bioinformatics, the number of receptor and non-receptor tyrosine kinases that have been identified as valuable molecular targets has greatly increased. Currently, more than 20 different tyrosine kinase targets are under evaluation in drug discovery projects in oncology. The progress made in the crystallisation of protein kinases, in most cases complexed with ATP-site-directed inhibitors, has confirmed that the ATPbinding domain of tyrosine kinases is an attractive target for rational drug design; more than 20 ATP-competitive, low molecular weight inhibitors are in various phases of clinical evaluation. Meanwhile, clinical proof-of-concept (POC) has been achieved with several antibodies and small molecules targeted against tyrosine kinases. With Herceptin, Glivec and Iressa (registered in Japan), the first kinase drugs have entered the market. This review describes the preclinical and clinical status of low molecular weight drugs targeted against different tyrosine kinases (e.g., epidermal growth factor receptor [EGFR], vascular endothelial growth factor receptor [VEGFR], platelet-derived growth factor receptor [PDGFR], Kit, Fms-like tyrosine kinase [Flt]-3), briefly describes new targets, and provides a critical analysis of the current situation in the area of tyrosine kinase inhibitors.


Expert Opinion on Therapeutic Patents | 1997

Protein tyrosine kinase inhibitors in cancer treatment

Peter Traxler

Competition in the field of tyrosine kinase inhibitors has increased in the last few years. New receptor and non-receptor tyrosine kinases have been identified as attractive targets for drug discovery programs. A pharmacophore model of the ATP-binding site of the epidermal growth factor-receptor (EGF-R) tyrosine kinase has been developed and successfully used for the rational design of tyrosine kinase inhibitors. Several inhibitor classes containing a phenylamino-pyrimidine moiety in their structure have provided highly selective ATP-competitive tyrosine kinase inhibitors, active in the low nanomolar or even picomolar range, thus proving that the ATP-binding site of tyrosine kinases is an attractive target for the design of anticancer drugs. More and more examples of inhibitors against several tyrosine kinases are being described which, in addition to showing potent and selective in vitro activity, exhibit potency in relevant cellular and in vivo models. Presently, several tyrosine kinase inhibitors w...


Bioorganic & Medicinal Chemistry Letters | 1996

PHENYLAMINO-PYRIMIDINE (PAP)-DERIVATIVES : A NEW CLASS OF POTENT AND HIGHLY SELECTIVE PDGF-RECEPTOR AUTOPHOSPHORYLATION INHIBITORS

Jürg Zimmermann; Elisabeth Buchdunger; Helmut Mett; Thomas Meyer; Nicholas B. Lydon; Peter Traxler

Abstract Phenylamino-pyrimidines represent a novel class of inhibitors of the PDGF-receptor autophosphorylation with a high degree of selectivity versus other tyrosine and serine/threonine kinases. Optimum activity of ca 10 nM (IC50) was observed when the phenylamino-group which is attached to the pyrimidine carries a benzamide-moiety with a lipophilic substituent in 4-position.


Medicinal Research Reviews | 2000

ATP site-directed competitive and irreversible inhibitors of protein kinases

Carlos Garcia-Echeverria; Peter Traxler; Dean B. Evans

Several tyrosine and serine/threonine protein kinases have emerged in the last few years as attractive targets in the search for new therapeutic agents being applicable in many different disease indications. Initially, inhibition of these protein kinases by ATP site‐directed inhibitors was considered less prone to success, but medicinal chemists from both academia and industry have been able to impart potency and selectivity to a limited number of scaffolds by modulating and fine‐tuning the interactions of the modified template with the ATP binding site of the selected kinase. The chemical templates that have been used in the synthesis of ATP site‐directed protein kinase inhibitors are reviewed with emphasis on the kinase inhibitors that have entered or are about to enter clinical trials. Examples have been selected to illustrate how structure‐based design approaches and new methods to increase compound diversity have had an impact on this area of research.


Expert Opinion on Therapeutic Patents | 1998

Tyrosine kinase inhibitors in cancer treatment (Part II)

Peter Traxler

In the last few years, enormous progress in the field of signal transduction inhibition has been made. Many companies have entered the field. Along with the epidermal growth factor receptor (EGFR) tyrosine kinase, many other tyrosine kinases have been identified as interesting targets for drug discovery projects. X-ray data of more than 40 crystal structures of protein kinases, in most cases complexed with an inhibitor, have been published. Pharmacophore models for the binding of inhibitors in the ATP-binding site of protein kinases have been developed that are generally applicable, enabling the rational design of tyrosine as well as serine/threonine kinase inhibitors. It has been proven by numerous examples that the ATP-binding of protein kinases is an exciting target for the design of anticancer drugs. In many cases, it has also been demonstrated that through rational design it is possible to modify a lead structure in such a way that inhibitors with an altered selectivity profile are obtained. Chemical...


Journal of Computer-aided Molecular Design | 1995

Modelling study of protein kinase inhibitors: Binding mode of staurosporine and origin of the selectivity of CGP 52411

Pascal Furet; Giorgio Caravatti; Nicholas B. Lydon; John P. Priestle; Janusz M. Sowadski; Uwe Trinks; Peter Traxler

SummaryA model for the binding mode of the potent protein kinase inhibitor staurosporine is proposed. Using the information provided by the crystal structure of the cyclic-AMP-dependent protein kinase, it is suggested that staurosporine, despite a seemingly unrelated chemical structure, exploits the same key hydrogen-bond interactions as ATP, the cofactor of the protein kinases, in its binding mode. The structure-activity relationships of the inhibitor and a docking analysis give strong support to this protein tyrosine kinase is rationalized on the basis of the model. It is proposed that this selectivity originates in the occupancy, by one of the anilino moieties of the inhibitor, of the region of the enzyme cleft that normally binds the ribose ring of ATP, which appears to possess a marked lipophilic character in this kinase.

Collaboration


Dive into the Peter Traxler's collaboration.

Researchain Logo
Decentralizing Knowledge