Peter Ugocsai
University of Regensburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Ugocsai.
PLOS Genetics | 2009
Andrew A. Hicks; Peter P. Pramstaller; Åsa Johansson; Veronique Vitart; Igor Rudan; Peter Ugocsai; Yurii S. Aulchenko; Christopher S. Franklin; Gerhard Liebisch; Jeanette Erdmann; Inger Jonasson; Irina V. Zorkoltseva; Cristian Pattaro; Caroline Hayward; Aaron Isaacs; Christian Hengstenberg; Susan Campbell; Carsten Gnewuch; A. CecileJ.W. Janssens; Anatoly V. Kirichenko; Inke R. König; Fabio Marroni; Ozren Polašek; Ayse Demirkan; Ivana Kolcic; Christine Schwienbacher; Wilmar Igl; Zrinka Biloglav; Jacqueline C. M. Witteman; Irene Pichler
Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic β-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08×10−66. The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1–3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10−4 or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases.
PLOS Genetics | 2012
Ayse Demirkan; Cornelia M. van Duijn; Peter Ugocsai; Aaron Isaacs; Peter P. Pramstaller; Gerhard Liebisch; James F. Wilson; Åsa Johansson; Igor Rudan; Yurii S. Aulchenko; Anatoly V. Kirichenko; A. Cecile J. W. Janssens; Ritsert C. Jansen; Carsten Gnewuch; Francisco S. Domingues; Cristian Pattaro; Sarah H. Wild; Inger Jonasson; Ozren Polasek; Irina V. Zorkoltseva; Albert Hofman; Lennart C. Karssen; Maksim Struchalin; James A B Floyd; Wilmar Igl; Zrinka Biloglav; Linda Broer; Arne Pfeufer; Irene Pichler; Susan Campbell
Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10−204) and 10 loci for sphingolipids (smallest P-value = 3.10×10−57). After a correction for multiple comparisons (P-value<2.2×10−9), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.
Leukemia | 2009
Márk Plander; Silvia Seegers; Peter Ugocsai; S Diermeier-Daucher; J Iványi; Gerd Schmitz; Ferdinand Hofstädter; S Schwarz; Evelyn Orsó; Ruth Knüchel; Gero Brockhoff
Chronic lymphocytic leukemia (CLL) is a malignancy of mature B-lymphocytes that manifests in a variety of clinical courses. The accumulation of CLL-cells is primarily caused by defective apoptosis; however, a higher proliferative capacity has also been found to correlate with poorer prognostic factors. Proliferating CLL-cells are confined to specialized structures called pseudofollicles, which contain CLL-cells, T-lymphocytes, and stromal cells. We established an in vitro model for pseudofollicles to characterize the behavior of CLL-cells in relation to clinical courses with different outcomes. Only CLL-cells from progressive clinical cases were inducible to proliferate by a combination of soluble CD40L/IL-2/IL-10 in co-culture with stromal cells. Proliferating CLL-cells showed a higher and more extensive expression of antigens, which are important in T–B-cell interactions such as CD40, MHC II, and adhesion molecules. IL-4 increased interferon regulatory factor-4 expression and induced a specific immunophenotype, which may imply plasmacytic differentiation. Furthermore, it was shown that co-cultured stromal cells protected CLL-cells from apoptosis. CLL-cells from clinically indolent cases had a far worse survival rate in medium than the cells from poor prognostic cases. Thus, we can assume that not only a different resistance to apoptosis, but also proliferation contributes to the progression of CLL resulting in bone marrow failure with thrombocytopenia and anemia.
Journal of Psychiatric Research | 2013
Ayse Demirkan; Aaron Isaacs; Peter Ugocsai; Gerhard Liebisch; Maksim Struchalin; Igor Rudan; James F. Wilson; Peter P. Pramstaller; Ulf Gyllensten; Harry Campbell; Gerd Schmitz; Ben A. Oostra; Cornelia van Duijn
The central nervous system has the second highest concentration of lipids after adipose tissue. Alterations in neural membrane phospho- and sphingolipid composition can influence crucial intra- and intercellular signalling and alter the membranes properties. Recently, the polyunsaturated fatty acids (PUFA) hypothesis for depression suggests that phospho- and sphingolipid metabolism includes potential pathways for the disease. In 742 people from a Dutch family-based study, we assessed the relationships between 148 different plasma phospho- and sphingolipid species and depression/anxiety symptoms as measured by the Hospital Anxiety and Depression Scales (HADS-A and HADS-D) and the Centre for Epidemiological Studies Depression Scale (CES-D). We observed significant differences in plasma sphingomyelins (SPM), particularly the SPM 23:1/SPM 16:0 ratio, which was inversely correlated with depressive symptom scores. We observed a similar trend for plasma phosphatidylcholines (PC), particularly the molar proportion of PC O 36:4 and its ratio to ceramide CER 20:0. Absolute levels of PC O 36:4 were also associated with depression symptoms in an independent replication. To our knowledge this is the first study on depressive symptoms that focuses on specific phospho- and sphingolipid molecules in plasma rather than total PUFA concentrations. The findings of this lipidomic study suggests that plasma sphingomyelins and ether phospholipids should be further studied for their potential as biomarkers and for a better understanding of the underlying mechanisms of this systemic disease.
Current Opinion in Lipidology | 2007
Gerd Schmitz; Anna Schmitz-Madry; Peter Ugocsai
Purpose of review To summarize recent findings on pharmacokinetics, pharmacodynamics, drug–drug interactions and influence of lifestyle heterogeneity on adverse events in cholesterol-lowering therapy Recent findings The prevention of cardiovascular disease is critically dependent on lipid-lowery therapy, including statins, cholesterol absorption inhibitors, fibrates and nicotinic acid. Statins are the most prescribed drugs in lipid lowering therapy with variability in response and almost one third of the patients do not meet their treatment goals. The severe adverse effects of treatment with cerivastatin stimulated the search for new genes and gene variations affecting pharmacokinetics, drug–drug interactions and pharmacodynamics. Moreover, instead of monotherapy, combined therapy of statins with ezetemibe and niacin was considered. This led to the identification of CD13, NPC1L1 and HM74A as new targets and CYP2C8 and glucuronidation enzymes as potential targets for drug–drug interactions. Moreover multiple polymorphic sites and pleiotrophic gene targets were reinvestigated in larger cohorts and the relevant pathogenetic factors start to evolve. Summary Statin therapy is widely used and well tolerated by the majority of patients. To further reduce potential adverse effects and to increase efficacy, combined therapy concepts with ezetimibe or niacin are underway.
Cytometry Part A | 2006
Peter Ugocsai; Stefan Barlage; Ashraf Dada; Gerd Schmitz
Local dysregulation of iron metabolism is suggested to contribute to atherosclerotic lesion development through hemoglobin scavenging pathways. We evaluated the effects of CD163‐mediated uptake of hemoglobin‐haptoglobin (HbHp) complexes on surface CD163 and intracellular heme oxygenase‐1 expression and the secretion of pro‐ and antiinflammatory cytokines by macrophages. We found that increased availability of HbHp complexes triggers the upregulation of surface CD163, and also results in a dose‐dependent secretion of IL‐6 and IL‐10.
BMC Bioinformatics | 2008
Dominik Lutter; Peter Ugocsai; Margot Grandl; Evelyn Orsó; Fabian J. Theis; Elmar Wolfgang Lang; Gerd Schmitz
BackgroundThe analysis of high-throughput gene expression data sets derived from microarray experiments still is a field of extensive investigation. Although new approaches and algorithms are published continuously, mostly conventional methods like hierarchical clustering algorithms or variance analysis tools are used. Here we take a closer look at independent component analysis (ICA) which is already discussed widely as a new analysis approach. However, deep exploration of its applicability and relevance to concrete biological problems is still missing. In this study, we investigate the relevance of ICA in gaining new insights into well characterized regulatory mechanisms of M-CSF dependent macrophage differentiation.ResultsStatistically independent gene expression modes (GEM) were extracted from observed gene expression signatures (GES) through ICA of different microarray experiments. From each GEM we deduced a group of genes, henceforth called sub-mode. These sub-modes were further analyzed with different database query and literature mining tools and then combined to form so called meta-modes. With them we performed a knowledge-based pathway analysis and reconstructed a well known signal cascade.ConclusionWe show that ICA is an appropriate tool to uncover underlying biological mechanisms from microarray data. Most of the well known pathways of M-CSF dependent monocyte to macrophage differentiation can be identified by this unsupervised microarray data analysis. Moreover, recent research results like the involvement of proliferation associated cellular mechanisms during macrophage differentiation can be corroborated.
The International Journal of Biochemistry & Cell Biology | 2010
Peter Ugocsai; Antonia Hohenstatt; György Paragh; Gerhard Liebisch; Thomas Langmann; Zsuzsanna Wolf; Thomas Weiss; Peter Groitl; Thomas Dobner; Piotr Kasprzak; László Göbölös; Andreas Falkert; Birgit Seelbach-Goebel; Alexandra Gellhaus; Elke Winterhager; Markus Schmidt; Gregg L. Semenza; Gerd Schmitz
ATP-binding cassette transporter A1 plays (ABCA1) a major role in reverse cholesterol transport, a process closely related to atherogenesis. In the thickening atherosclerotic lesions lipid loaded macrophages are exposed to regions of local hypoxia that may influence reverse cholesterol transport. Here we studied the effect of hypoxia on ABCA1 regulation and cholesterol efflux in human macrophages. We found that the hypoxia-inducible factor 1 (HIF-1) specifically binds to the HIF-1 response element of the ABCA1 promoter and the HIF-1 complex increases ABCA1 promoter activity along with ABCA1 expression. Primary human macrophages exposed to hypoxia or expressing constitutively active HIF-1alpha responded with a potent change in ABCA1 expression, which showed a strong correlation with HIF-1beta expression (r: 0.95-0.91). Moreover, ABCA1-mediated cholesterol efflux was also found to be regulated by HIF-1beta under hypoxia. In vivo, in macrophages prepared from human atherosclerotic lesions ABCA1 levels showed a strong correlation with HIF-1beta expression. This in vivo regulatory mechanism was confirmed in human pre-eclamptic placentas, a clinical condition with severe local hypoxia. These results demonstrate that HIF-1beta availability determines ABCA1 expression and cholesterol efflux in macrophages under hypoxia and may contribute to the interpersonal variability of atherosclerotic lesion progression.
Experimental Dermatology | 2008
György Paragh; Petra Schling; Peter Ugocsai; Alexander E. Kel; Gerhard Liebisch; Susanne Heimerl; Christoph Moehle; Yvonne Dr. Schiemann; Michael Wegmann; Mike Farwick; Norbert Wikonkál; József Mandl; Thomas Langmann; Gerd Schmitz
Abstract: Sphingolipids are important components of the water permeability barrier of the skin. Moreover, ceramides were also shown to influence keratinocyte differentiation and regulate cellular signalling. A confluence‐induced differentiation model of normal human keratinocytes was established to allow evaluation of pro‐ and anti‐differentiation effects of exogenous compounds. The effects of phytosphingosine (PS), sphingosine (SO), sphinganine (SA) and their hexanoyl (–C6), stearoyl (–C18) and salicyl (–SLC) derivatives, C12‐alkylamine‐salicylate (C12‐SLC), salicylate (SLC) along with vitamin D3 (VD3) and retinol as control substances were tested in this system. Cytotoxicity assays were carried out to optimize the incubation conditions of compounds and whole genome expression changes were monitored by DNA‐microarray on days 0, 1 and 4. Geometric means of gene expression levels of a subset of known keratinocyte differentiation‐related genes were calculated from the microarray data to compare effects of the sphingolipid derivatives. Compound treatment‐induced transcriptional changes were analysed by the ExPlain™ software (BIOBASE GmbH). Five of the assayed substances (SA, SO‐C6, PS‐C6, SO‐SLC, PS‐SLC) were found to be potent promoters of keratinocyte differentiation compared with VD3, and C12‐SLC revealed potential anti‐differentiation properties. ExPlain™ analysis found a different regulatory profile in the computed transcriptional networks of the sphingoid bases versus their –C6 and especially –SLC derivatives suggesting that the change in their keratinocyte differentiation modifying potential is due to a unique effect of the covalent attachment of the salicylic acid. Taken together, these results demonstrate the gene regulatory potential of sphingolipid species that could be valuable for dermatological or cosmetic applications.
Annals of Hematology | 2011
Márk Plander; Peter Ugocsai; Silvia Seegers; Evelyn Orsó; Albrecht Reichle; Gerd Schmitz; Ferdinand Hofstädter; Gero Brockhoff
The prolonged life span of chronic lymphocytic leukemia (CLL) cells in vivo is assumed to depend on the surrounding microenvironment since this biologic feature is lost in vitro. We studied here the molecular interactions between CLL cells and their surrounding stroma to identify factors that help CLL cells to resist apoptosis. Sorted CLL cells from 21 patients were cultured in vitro on allogenous, normal bone marrow stromal cells (BMSCs) in the presence/absence of CD40 ligand or in culture medium alone. Surface and mRNA expression of interaction molecules, cytokine production, and apoptosis rate was measured by flow cytometric, real-time PCR and standard immunologic assays. The interaction between CLL cells and BMSCs rescued CLL cells from apoptosis. BMSCs co-cultured with CLL cells showed a strong increase in IL-8 and IL-6 secretion and up-regulated the expression of ICAM-1 and CD40 mRNA. The mRNA expression of CXCL12 and VCAM1 remained unchanged. In turn, CLL cells in interaction with BMSCs significantly up-regulated the expression of CD18 and CD49d that are ligands for the critical adhesion molecules on BMSCs. As a validation of the in vitro data, we found a significant higher expression of CD49d on CLL cells in bone marrow aspirates compared to peripheral blood CLL cells in patient samples. Up-regulation of adhesion molecules and their ligands in CLL–BMSCs interaction along with the increased cytokine production of BMSCs indicate a strong effect of CLL cells on BMSCs in favor of their apoptosis resistance.