Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Upcroft is active.

Publication


Featured researches published by Peter Upcroft.


Clinical Microbiology Reviews | 2001

Drug Targets and Mechanisms of Resistance in the Anaerobic Protozoa

Peter Upcroft; Jacqueline A. Upcroft

SUMMARY The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract, fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent, and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined. Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently been investigated using laboratory-induced resistant isolates. Instead of downregulation of the pyruvate:ferredoxin oxidoreductase and ferredoxin pathway as seen in G. duodenalis and T. vaginalis, E. histolytica induces oxidative stress mechanisms, including superoxide dismutase and peroxiredoxin. The review examines the value of investigating both clinical and laboratory-induced syngeneic drug-resistant isolates and dissection of the complementary data obtained. Comparison of resistance mechanisms in anaerobic bacteria and the parasitic protozoa is discussed as well as the value of studies of the epidemiology of resistance.


Cell Research | 2003

Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis

R. L. Dunne; Linda A. Dunn; Peter Upcroft; P. J. O'Donoghue; Jacqueline A. Upcroft

ABSTRACTTrichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer. Trichomoniasis has the highest prevalence and incidence of any sexually transmitted infection. The 5-nitroimidazole drugs, of which metronidazole is the most prescribed, are the only approved, effective drugs to treat trichomoniasis. Resistance against metronidazole is frequently reported and cross-resistance among the family of 5-nitroimidazole drugs is common, leaving no alternative for treatment, with some cases remaining unresolved. The mechanism of metronidazole resistance in T. vaginalis from treatment failures is not well understood, unlike resistance which is developed in the laboratory under increasing metronidazole pressure. In the latter situation, hydrogenosomal function which is involved in activation of the prodrug, metronidazole, is down-regulated. Reversion to sensitivity is incomplete after removal of drug pressure in the highly resistant parasites while clinically resistant strains, so far analysed, maintain their resistance levels in the absence of drug pressure. Although anaerobic resistance has been regarded as a laboratory induced phenomenon, it clearly has been demonstrated in clinical isolates. Pursuit of both approaches will allow dissection of the underlying mechanisms. Many alternative drugs and treatments have been tested in vivo in cases of refractory trichomoniasis, as well as in vitro with some successes including the broad spectrum anti-parasitic drug nitazoxanide. Drug resistance incidence in T. vaginalis appears to be on the increase and improved surveillance of treatment failures is urged.


Molecular and Biochemical Parasitology | 1996

Characterisation and purification of pyruvate:ferredoxin oxidoreductase from Giardia duodenalis.

Steven M. Townson; Jacqueline A. Upcroft; Peter Upcroft

The major 2-oxoacid oxidoreductase (2-OR), pyruvate:ferredoxin oxidoreductase (PFOR) from Giardia duodenalis has been purified to apparent homogeneity. A second 2-OR with a preference for alpha-ketobutyrate as substrate was identified and was removed from PFOR containing fractions during purification. Only PFOR and the second 2-OR were identified in gels of crude Giardia extracts assayed for 2-OR activity. The native form of PFOR which is membrane associated, is a homodimer of 138 kDa subunits. Pyruvate is the preferred substrate: alpha-ketobutyrate and oxaloacetate, but not phenyl-pyruvate or alpha-ketoglutarate, are decarboxylated. PFOR from Giardia is more stable than PFOR from most other organisms and purified PFOR can be stored without deterioration at -70 degrees C. Purified PFOR donates electrons to Giardia ferredoxin (Fd I) with concomitant reduction of metronidazole. However, two other Giardia ferredoxins did not accept electrons from PFOR. Consistent with the involvement of PFOR in metronidazole activation, the activity of pyruvate dependent 2-OR activity was decreased in all metronidazole-resistant lines tested but not in furazolidone-resistant lines. The presence of three different ferredoxins and two 2-ORs in Giardia suggests that a number of different electron transport pathways operate in this organism providing unusual metabolic flexibility for a eukaryote.


Expert Opinion on Drug Safety | 2003

Efficacy of antigiardial drugs

Janelle M. Wright; Linda A. Dunn; Peter Upcroft; Jacqueline A. Upcroft

The flagellated protozoa Giardia duodenalis is the most commonly detected parasite in the intestinal tract of humans. Infections with the parasite result in diarrhoeal disease in humans and animals, with infants at risk from failureto-thrive syndrome. The incidence of giardiasis worldwide may be as high as 1000 million cases. Current recommended treatments include the nitroheterocyclic drugs tinidazole, metronidazole and furazolidone, the substituted acridine, quinacrine, and the benzimidazole, albendazole. Paromomycin is also used in some situations, and nitazoxanide is proving to be useful. However, treatment failures have been reported with all of the common antigiardial agents, and drug resistance to all available drugs has been demonstrated in the laboratory. In addition, clinical resistance has been reported, including cases where patients failed both metronidazole and albendazole treatments. The identification of new antigiardial drugs is an important consideration for the future, but maintaining the usefulness of the existing drugs is the most cost-effective measure to ensure the continued availability of antigiardial drugs.


Antimicrobial Agents and Chemotherapy | 2006

5-Nitroimidazole Drugs Effective against Metronidazole-Resistant Trichomonas vaginalis and Giardia duodenalis

Jacqueline A. Upcroft; Linda A. Dunn; Janelle M. Wright; Kamel Benakli; Peter Upcroft; Patrice Vanelle

ABSTRACT Metronidazole (Mz)-resistant Giardia and Trichomonas were inhibited by 1 of 30 new 5-nitroimidazole drugs. Another five drugs were effective against some but not all of the Mz-resistant parasites. This study provides the incentive for the continued design of 5-nitroimidazole drugs to bypass cross-resistance among established 5-nitromidazole antiparasitic drugs.


International Journal for Parasitology | 1998

Anaerobic bacterial metabolism in the ancient eukaryote Giardia duodenalis

David M. Brown; J.A. Upcroft; Michael R. Edwards; Peter Upcroft

The protozoan parasite, Giardia duodenalis, shares many metabolic and genetic attributes of the bacteria, including fermentative energy metabolism which relies heavily on pyrophosphate rather than adenosine triphosphate and as a result contains two typically bacterial glycolytic enzymes which are pyrophosphate dependent. Pyruvate decarboxylation and subsequent electron transport to as yet unidentified anaerobic electron acceptors relies on a eubacterial-like pyruvate:ferredoxin oxidoreductase and an archaebacterial/eubacterial-like ferredoxin. The presence of another 2-ketoacid oxidoreductase (with a preference for alpha-ketobutyrate) and multiple ferredoxins in Giardia is also a trait shared with the anaerobic bacteria. Giardia pyruvate:ferredoxin oxidoreductase is distinct from the pyruvate dehydrogenase multienzyme complex invariably found in mitochondria. This is consistent with a lack of mitochondria, citric acid cycle, oxidative phosphorylation and glutathione in Giardia. Giardia duodenalis actively consumes oxygen and yet lacks the conventional mechanisms of oxidative stress management, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. In their place Giardia contains a prokaryotic H2O-producing NADH oxidase, a membrane-associated NADH peroxidase, a broad-range prokaryotic thioredoxin reductase-like disulphide reductase and the low molecular weight thiols, cysteine, thioglycolate, sulphite and coenzyme A. NADH oxidase is a major component of the electron transport pathway of Giardia which, in conjunction with disulphide reductase, protects oxygen-labile proteins such as ferredoxin and pyruvate:ferredoxin oxidoreductase against oxidative stress by maintaining a reduced intracellular environment. As the terminal oxidase, NADH oxidase provides a means of removing excess H+, thereby enabling continued pyruvate decarboxylation and the resultant production of acetate and adenosine triphosphate. A further example of the bacterial-like metabolism of Giardia is the utilisation of the amino acid arginine as an energy source. Giardia contain the arginine dihydrolase pathway, which occurs in a number of anaerobic prokaryotes, but not in other eukaryotes apart from trichomonads and Chlamydomonas reinhardtii. The pathway includes substrate level phosphorylation and is sufficiently active to make a major contribution to adenosine triphosphate production. Two enzymes of the pathway, arginine deiminase and carbamate kinase, are rare in eukaryotes and do not occur in higher animals. Arginine is transported into the trophozoite via a bacterial-like arginine:ornithine antiport. Together these metabolic pathways in Giardia provide a wide range of potential drug targets for future consideration.


Antimicrobial Agents and Chemotherapy | 2001

Drug Susceptibility Testing of Anaerobic Protozoa

Jacqueline A. Upcroft; Peter Upcroft

ABSTRACT A simple technique for routine, reproducible global surveillance of the drug susceptibility status of the anaerobic protozoaTrichomonas, Entamoeba, and Giardia is described. Data collected using this technique can be readily compared among different laboratories and with previously reported data. The technique employs a commercially available sachet and bag system to generate a low-oxygen environment and log2 drug dilutions in microtiter plates, which can be monitored without aerobic exposure, to assay drug-resistant laboratory lines and clinically resistant isolates. MICs (after 2 days) of 3.2 and 25 μM indicated metronidazole-sensitive and highly clinically resistant isolates ofT. vaginalis in anaerobic assays, respectively. The aerobic MICs were 25 and >200 μM. MICs (1 day) of 12.5 to 25 μM were found for axenic lines of E. histolytica, and MICs for G. duodenalis (3 days) ranged from 6.3 μM for metronidazole-sensitive isolates to 50 μM for laboratory metronidazole-resistant lines. This technique should encourage more extensive monitoring of drug resistance in these organisms.


Acta Tropica | 1994

Resistance to the nitroheterocyclic drugs

Steven M. Townson; P.F.L. Boreham; Peter Upcroft; J.A. Upcroft

The nitroheterocyclic drugs have been available since the early 1960s for the treatment of anaerobic protozoa. The application of these drugs has widened since then and they are presently used to treat anaerobic pathogenic bacteria and protozoa. The activity of the nitroheterocyclic drugs depends on the all-important nitro group attached to the imidazole or furan ring. Although the nitro radicals, generated by reduction of the parent drugs, are similar for both families of nitroheterocyclics, the nitroimidazoles and the nitrofurans, the electron potential of each is different and thus the mechanism of action depends on different pathways. The nitroimidazoles depend on reduction by ferredoxin or flavodoxin. The nitrofurans require nitroreductase activity, but the natural substrate of these enzymes has not been identified. Increased use of nitroheterocyclic drugs, in response to drug resistance to other commonly used antibiotics, has in turn resulted in drug resistance to a number of nitroheterocyclic drugs. Bacteroides strains and other bacteria, including Helicobacter, have developed resistance. Among the protozoa, Trichomonas has developed resistance to metronidazole via a number of mechanisms, especially a decrease in drug reduction, as a result of alterations in the electron transport pathways. Resistance to both types of nitroheterocyclic drugs has been reported in Giardia. Although resistance to these drugs is not widespread, their increased use world-wide as a prophylaxis and in chemotherapy will inevitably result in increased resistance in organisms commonly found in asymptomatic infections, including Trichomonas, Giardia and Entamoeba. However, the variety of substitutions which can be attached to the ring structures has led to a great variety of drugs being synthesised, some of which are many-fold more active than the commonly prescribed nitroheterocyclics. With careful administration of currently available drugs and continued interest in synthesising more active compounds, we can optimistically expect to have useful nitroheterocyclic drugs available for some time.


Journal of Antimicrobial Chemotherapy | 2011

Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia

David Leitsch; Anita G. Burgess; Linda A. Dunn; Kenia G. Krauer; Kevin Tan; Michael Duchêne; Peter Upcroft; Lars Eckmann; Jacqueline A. Upcroft

OBJECTIVES The mechanism of action of, and resistance to, metronidazole in the anaerobic (or micro-aerotolerant) protozoan parasite Giardia lamblia has long been associated with the reduction of ferredoxin (Fd) by the enzyme pyruvate:ferredoxin oxidoreductase (PFOR) and the subsequent activation of metronidazole by Fd to toxic radical species. Resistance to metronidazole has been associated with down-regulation of PFOR and Fd. The aim of this study was to determine whether the PFOR/Fd couple is the only pathway involved in metronidazole activation in Giardia. METHODS PFOR and Fd activities were measured in extracts of highly metronidazole-resistant (MTR(r)) lines and activities of recombinant G. lamblia thioredoxin reductase (GlTrxR) and NADPH oxidase were assessed for their involvement in metronidazole activation and resistance. RESULTS We demonstrated that several lines of highly MTR(r) G. lamblia have fully functional PFOR and Fd indicating that PFOR/Fd-independent mechanisms are involved in metronidazole activation and resistance in these cells. Flavin-dependent GlTrxR, like TrxR of other anaerobic protozoa, reduces 5-nitroimidazole compounds including metronidazole, although expression of TrxR is not decreased in MTR(r) Giardia. However, reduction of flavins is suppressed in highly MTR(r) cells, as evidenced by as much as an 80% decrease in NADPH oxidase flavin mononucleotide reduction activity. This suppression is consistent with generalized impaired flavin metabolism in highly MTR(r) Trichomonas vaginalis. CONCLUSIONS These data add to the mounting evidence against the dogma that PFOR/Fd is the only couple with a low enough redox potential to reduce metronidazole in anaerobes and point to the multi-factorial nature of metronidazole resistance.


International Journal for Parasitology | 1990

Drug resistance in Giardia intestinalis

J.A. Upcroft; Peter Upcroft; P.F.L. Boreham

Evidence for drug resistance in giardiasis is reviewed and biochemical studies undertaken to determine the basis for this resistance are discussed. Metronidazole and furazolidone, which produce toxic radicals within the cell, have different biochemical mechanisms of action. Resistance to metronidazole is negatively correlated with the intracellular concentration of pyruvateferredoxin oxidoreductase leading to a concomitant decrease in the uptake of free metronidazole into the cell, while resistance to furazolidone appears to be due to an increase in thiol cycling enzymes. At the molecular level resistance to metronidazole is associated with DNA changes. DNA probes which hybridize with specific chromosomes and repetitive sequences indicate that rearrangements both at the chromosome and repetitive DNA level occurred concurrently with the development of metronidazole resistance. The problems of cross-resistance and treatment failures that occur in the absence of resistance are additional difficulties which have important implications for the management of individual patients. New drugs such as azithromycin, while showing great variation in activity against different stocks may be useful in treating some refractory cases of giardiasis. In the community, it is important to recognize the occurrence and spread of drug resistant Giardia, and markers, such as DNA probes, provide methods to monitor potential epidemics and the spread of drug resistant Giardia.

Collaboration


Dive into the Peter Upcroft's collaboration.

Top Co-Authors

Avatar

Jacqueline A. Upcroft

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

J.A. Upcroft

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Linda A. Dunn

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

P.F.L. Boreham

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew Healey

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nanhua Chen

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

David M. Brown

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Janelle M. Wright

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kenia G. Krauer

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge