Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter V. Coveney is active.

Publication


Featured researches published by Peter V. Coveney.


Physical Review E | 2003

Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow.

Rafael Delgado-Buscalioni; Peter V. Coveney

The aim of hybrid methods in simulations is to communicate regions with disparate time and length scales. Here, a fluid described at the atomistic level within an inner region P is coupled to an outer region C described by continuum fluid dynamics. The matching of both descriptions of matter is made across an overlapping region and, in general, consists of a two-way coupling scheme (C-->P and P-->C) that conveys mass, momentum, and energy fluxes. The contribution of the hybrid scheme hereby presented is twofold. First, it treats unsteady flows and, more importantly, it handles energy exchange between both C and P regions. The implementation of the C-->P coupling is tested here using steady and unsteady flows with different rates of mass, momentum and energy exchange. In particular, relaxing flows described by linear hydrodynamics (transversal and longitudinal waves) are most enlightening as they comprise the whole set of hydrodynamic modes. Applying the hybrid coupling scheme after the onset of an initial perturbation, the cell-averaged Fourier components of the flow variables in the P region (velocity, density, internal energy, temperature, and pressure) evolve in excellent agreement with the hydrodynamic trends. It is also shown that the scheme preserves the correct rate of entropy production. We discuss some general requirements on the coarse-grained length and time scales arising from both the characteristic microscopic and hydrodynamic scales.


Journal of the American Chemical Society | 2008

Rapid and Accurate Prediction of Binding Free Energies for Saquinavir-Bound HIV-1 Proteases

Ileana Stoica; and S. Kashif Sadiq; Peter V. Coveney

To explain drug resistance by computer simulations at the molecular level, we first have to assess the accuracy of theoretical predictions. Herein we report an application of the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) technique to the ranking of binding affinities of the inhibitor saquinavir with the wild type (WT) and three resistant mutants of HIV-1 protease: L90M, G48V, and G48V/L90M. For each ligand-protein complex we report 10 ns of fully unrestrained molecular dynamics (MD) simulations with explicit solvent. We investigate convergence, internal consistency, and model dependency of MM/PBSA ligand binding energies. Converged enthalpy and entropy estimates produce ligand binding affinities within 1.5 kcal/mol of experimental values, with a remarkable level of correlation to the experimentally observed ranking of resistance levels. A detailed analysis of the enthalpic/entropic balance of drug-protease interactions explains resistance in L90M in terms of a higher vibrational entropy than in the WT complex, while G48V disrupts critical hydrogen bonds at the inhibitors binding site and produces an altered, more unfavorable balance of Coulomb and polar desolvation energies.


Philosophical Transactions of the Royal Society A | 2010

A vision and strategy for the virtual physiological human in 2010 and beyond

Peter Hunter; Peter V. Coveney; Bernard de Bono; Vanessa Diaz; John Fenner; Alejandro F. Frangi; Peter C. Harris; Rod Hose; Peter Kohl; Patricia V. Lawford; Keith McCormack; Miriam Mendes; Stig W. Omholt; Alfio Quarteroni; John Skår; Jesper Tegnér; S. Randall Thomas; Ioannis G. Tollis; Ioannis Tsamardinos; Johannes H. G. M. van Beek; Marco Viceconti

European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also helping to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by framework 6 strategy for a European physiome (STEP) project in 2006. It is now time to assess the accomplishments of the last 2 years and update the STEP vision for the VPH. We consider the biomedical science, healthcare and information and communications technology challenges facing the project and we propose the VPH Institute as a means of sustaining the vision of VPH beyond the time frame of the NoE.


Physical Review E | 2000

Foundations of dissipative particle dynamics

Eirik G. Flekkøy; Peter V. Coveney; Gianni De Fabritiis

We derive a mesoscopic modeling and simulation technique that is very close to the technique known as dissipative particle dynamics. The model is derived from molecular dynamics by means of a systematic coarse-graining procedure. This procedure links the forces between the dissipative particles to a hydrodynamic description of the underlying molecular dynamics (MD) particles. In particular, the dissipative particle forces are given directly in terms of the viscosity emergent from MD, while the interparticle energy transfer is similarly given by the heat conductivity derived from MD. In linking the microscopic and mesoscopic descriptions we thus rely on the macroscopic or phenomenological description emergent from MD. Thus the rules governing this form of dissipative particle dynamics reflect the underlying molecular dynamics; in particular, all the underlying conservation laws carry over from the microscopic to the mesoscopic description. We obtain the forces experienced by the dissipative particles together with an approximate form of the associated equilibrium distribution. Whereas previously the dissipative particles were spheres of fixed size and mass, now they are defined as cells on a Voronoi lattice with variable masses and sizes. This Voronoi lattice arises naturally from the coarse-graining procedure, which may be applied iteratively and thus represents a form of renormalization-group mapping. It enables us to select any desired local scale for the mesoscopic description of a given problem. Indeed, the method may be used to deal with situations in which several different length scales are simultaneously present. We compare and contrast this particulate model with existing continuum fluid dynamics techniques, which rely on a purely macroscopic and phenomenological approach. Simulations carried out with the present scheme show good agreement with theoretical predictions for the equilibrium behavior.


Journal of the American Chemical Society | 2008

Computer simulation study of the structural stability and materials properties of DNA-intercalated layered double hydroxides

Mary-Ann Thyveetil; Peter V. Coveney; and H. Chris Greenwell; James L. Suter

The intercalation of DNA into layered double hydroxides (LDHs) has various applications, including drug delivery for gene therapy and origins of life studies. The nanoscale dimensions of the interlayer region make the exact conformation of the intercalated DNA difficult to elucidate experimentally. We use molecular dynamics techniques, performed on high performance supercomputing grids, to carry out large-scale simulations of double stranded, linear and plasmid DNA up to 480 base pairs in length intercalated within a magnesium-aluminum LDH. Currently only limited experimental data have been reported for these systems. Our models are found to be in agreement with experimental observations, according to which hydration is a crucial factor in determining the structural stability of DNA. Phosphate backbone groups are found to align with aluminum lattice positions. At elevated temperatures and pressures, relevant to origins of life studies which maintain that the earliest life forms originated around deep ocean hydrothermal vents, the structural stability of LDH-intercalated DNA is substantially enhanced as compared to DNA in bulk water. We also discuss how the materials properties of the LDH are modified due to DNA intercalation.


Journal of Materials Chemistry | 2006

On the application of computer simulation techniques to anionic and cationic clays: A materials chemistry perspective

H. Chris Greenwell; William Jones; Peter V. Coveney; Stephen Stackhouse

The use of computational methods for the study of clay minerals has become an essential adjunct to experimental techniques for the analysis of these poorly ordered materials. Although information may be obtained through conventional methods of analysis regarding macroscopic properties of clay minerals, information about the spatial arrangement of molecules within the interlayers is hard to obtain without the aid of computer simulation. The interpretation of experimental data from techniques such as solid-state nuclear magnetic resonance or neutron diffraction studies is considerably assisted by the application of computer simulations. Using a series of case studies, we review the techniques, applications and insight gained from the use of molecular simulation applied to the study of clay systems (particularly for materials applications). The amount of information that can be gleaned from such simulations continues to grow, and is leading to ever larger-scale and hence more realistic classical and quantum mechanical studies which promise to reveal new and unexpected phenomena.


Physical Review Letters | 1999

FROM MOLECULAR DYNAMICS TO DISSIPATIVE PARTICLE DYNAMICS

Eirik G. Flekkøy; Peter V. Coveney

A procedure is introduced for deriving a coarse-grained dissipative particle dynamics from molecular dynamics. The rules of the dissipative particle dynamics are derived from the underlying molecular interactions, and a Langevin equation is obtained that describes the forces experienced by the dissipative particles and specifies the associated canonical Gibbs distribution for the system.


Philosophical Transactions of the Royal Society A | 2008

The EuroPhysiome, STEP and a roadmap for the virtual physiological human.

John Fenner; Bindi S. Brook; Gordon J. Clapworthy; Peter V. Coveney; Véronique Feipel; H. Gregersen; D.R. Hose; Peter Kohl; Patricia V. Lawford; K.M. McCormack; D. Pinney; S.R. Thomas; S. Van Sint Jan; Sarah L. Waters; Marco Viceconti

Biomedical science and its allied disciplines are entering a new era in which computational methods and technologies are poised to play a prevalent role in supporting collaborative investigation of the human body. Within Europe, this has its focus in the virtual physiological human (VPH), which is an evolving entity that has emerged from the EuroPhysiome initiative and the strategy for the EuroPhysiome (STEP) consortium. The VPH is intended to be a solution to common infrastructure needs for physiome projects across the globe, providing a unifying architecture that facilitates integration and prediction, ultimately creating a framework capable of describing Homo sapiens in silico. The routine reliance of the biomedical industry, biomedical research and clinical practice on information technology (IT) highlights the importance of a tailor-made and robust IT infrastructure, but numerous challenges need to be addressed if the VPH is to become a mature technological reality. Appropriate investment will reap considerable rewards, since it is anticipated that the VPH will influence all sectors of society, with implications predominantly for improved healthcare, improved competitiveness in industry and greater understanding of (patho)physiological processes. This paper considers issues pertinent to the development of the VPH, highlighted by the work of the STEP consortium.


Journal of Chemical Physics | 2003

USHER: An algorithm for particle insertion in dense fluids

Rafael Delgado-Buscalioni; Peter V. Coveney

The insertion of solvent particles in molecular dynamics simulations of complex fluids is required in many situations involving open systems, but this challenging task has been scarcely explored in the literature. We propose a simple and fast algorithm (USHER) that inserts the new solvent particles at locations where the potential energy has the desired prespecified value. For instance, this value may be set equal to the system’s excess energy per particle in such a way that the inserted particles are energetically indistinguishable from the other particles present. During the search for the insertion site, the USHER algorithm uses a steepest-descent iterator with a displacement whose magnitude is adapted to the local features of the energy landscape. The only adjustable parameter in the algorithm is the maximum displacement, and we show that its optimal value can be extracted from an analysis of the structure of the potential energy landscape. We present insertion tests in periodic and nonperiodic system...


Physical Review Letters | 2006

Multiscale modeling of liquids with molecular specificity

G. De Fabritiis; Rafael Delgado-Buscalioni; Peter V. Coveney

The separation between molecular and mesoscopic length and time scales poses a severe limit to molecular simulations of mesoscale phenomena. We describe a hybrid multiscale computational technique which addresses this problem by keeping the full molecular nature of the system where it is of interest and coarse graining it elsewhere. This is made possible by coupling molecular dynamics with a mesoscopic description of realistic liquids based on Landaus fluctuating hydrodynamics. We show that our scheme correctly couples hydrodynamics and that fluctuations, at both the molecular and continuum levels, are thermodynamically consistent. Hybrid simulations of sound waves in bulk water and reflected by a lipid monolayer are presented as illustrations of the scheme.

Collaboration


Dive into the Peter V. Coveney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek Groen

University College London

View shared research outputs
Top Co-Authors

Avatar

Shunzhou Wan

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Wright

University College London

View shared research outputs
Top Co-Authors

Avatar

James L. Suter

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Chin

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge