Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter V. Lovell is active.

Publication


Featured researches published by Peter V. Lovell.


Science | 2014

Whole-genome analyses resolve early branches in the tree of life of modern birds

Paula F. Campos; Amhed Missael; Vargas Velazquez; José Alfredo Samaniego; Claudio V. Mello; Peter V. Lovell; Michael Bunce; Robb T. Brumfield; Frederick H. Sheldon; Erich D. Jarvis; Siavash Mirarab; Andre J. Aberer; Bo Li; Peter Houde; Cai Li; Simon Y. W. Ho; Brant C. Faircloth; Jason T. Howard; Alexander Suh; Claudia C Weber; Rute R. da Fonseca; Jianwen Li; Fang Zhang; Hui Li; Long Zhou; Nitish Narula; Liang Liu; Bastien Boussau; Volodymyr Zavidovych; Sankar Subramanian

To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.


Nature | 2010

The genome of a songbird.

Wesley C. Warren; David F. Clayton; Hans Ellegren; Arthur P. Arnold; LaDeana W. Hillier; Axel Künstner; Steve Searle; Simon White; Albert J. Vilella; Susan Fairley; Andreas Heger; Lesheng Kong; Chris P. Ponting; Erich D. Jarvis; Claudio V. Mello; Patrick Minx; Peter V. Lovell; Tarciso Velho; Margaret Ferris; Christopher N. Balakrishnan; Saurabh Sinha; Charles Blatti; Sarah E. London; Yun Li; Ya-Chi Lin; Julia M. George; Jonathan V. Sweedler; Bruce R. Southey; Preethi H. Gunaratne; M. G. Watson

The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken—the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.


Science | 2014

Convergent transcriptional specializations in the brains of humans and song-learning birds.

Andreas R. Pfenning; Erina Hara; Osceola Whitney; Miriam V. Rivas; Rui Wang; Petra L. Roulhac; Jason T. Howard; Morgan Wirthlin; Peter V. Lovell; Ganeshkumar Ganapathy; Jacquelyn Mouncastle; M. Arthur Moseley; J. Will Thompson; Erik J. Soderblom; Atsushi Iriki; Masaki Kato; M. Thomas P. Gilbert; Guojie Zhang; Trygve E. Bakken; Angie Bongaarts; Amy Bernard; Ed Lein; Claudio V. Mello; Alexander J. Hartemink; Erich D. Jarvis

INTRODUCTION Vocal learning, the ability to imitate sounds, is a trait that has undergone convergent evolution in several lineages of birds and mammals, including song-learning birds and humans. This behavior requires cortical and striatal vocal brain regions, which form unique connections in vocal-learning species. These regions have been found to have specialized gene expression within some species, but the patterns of specialization across vocal-learning bird and mammal species have not been systematically explored. Identifying molecular brain similarities across species. Brain region gene expression specializations were hierarchically organized into specialization trees of each species (blue lines), including for circuits that control learned vocalizations (highlighted green, purple, and orange regions). A set of comparative genomic algorithms found the most similarly specialized regions between songbird and human (orange lines), some of which are convergently evolved. RATIONALE The sequencing of genomes representing all major vocal-learning and vocal-nonlearning avian lineages has allowed us to develop the genomic tools to measure anatomical gene expression across species. Here, we asked whether behavioral and anatomical convergence is associated with gene expression convergence in the brains of vocal-learning birds and humans. RESULTS We developed a computational approach that discovers homologous and convergent specialized anatomical gene expression profiles. This includes generating hierarchically organized gene expression specialization trees for each species and a dynamic programming algorithm that finds the optimal alignment between species brain trees. We applied this approach to brain region gene expression databases of thousands of samples and genes that we and others generated from multiple species, including humans and song-learning birds (songbird, parrot, and hummingbird) as well as vocal-nonlearning nonhuman primates (macaque) and birds (dove and quail). Our results confirmed the recently revised understanding of the relationships between avian and mammalian brains. We further found that songbird Area X, a striatal region necessary for vocal learning, was most similar to a part of the human striatum activated during speech production. The RA (robust nucleus of the arcopallium) analog of song-learning birds, necessary for song production, was most similar to laryngeal motor cortex regions in humans that control speech production. More than 50 genes contributed to their convergent specialization and were enriched in motor control and neural connectivity functions. These patterns were not found in vocal nonlearners, but songbird RA was similar to layer 5 of primate motor cortex for another set of genes, supporting previous hypotheses about the similarity of these cell types between bird and mammal brains. CONCLUSION Our approach can accurately and quantitatively identify functionally and molecularly analogous brain regions between species separated by as much as 310 million years from a common ancestor. We were able to identify analogous brain regions for song and speech between birds and humans, and broader homologous brain regions in which these specialized song and speech regions are located, for tens to hundreds of genes. These genes now serve as candidates involved in developing and maintaining the unique connectivity and functional properties of vocal-learning brain circuits shared across species. The finding that convergent neural circuits for vocal learning are accompanied by convergent molecular changes of multiple genes in species separated by millions of years from a common ancestor indicates that brain circuits for complex traits may have limited ways in which they could have evolved from that ancestor. Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes.


PLOS ONE | 2008

Birdsong “Transcriptomics”: Neurochemical Specializations of the Oscine Song System

Peter V. Lovell; David F. Clayton; Kirstin Replogle; Claudio V. Mello

Background Vocal learning is a rare and complex behavioral trait that serves as a basis for the acquisition of human spoken language. In songbirds, vocal learning and production depend on a set of specialized brain nuclei known as the song system. Methodology/Principal Findings Using high-throughput functional genomics we have identified ∼200 novel molecular markers of adult zebra finch HVC, a key node of the song system. These markers clearly differentiate HVC from the general pallial region to which HVC belongs, and thus represent molecular specializations of this song nucleus. Bioinformatics analysis reveals that several major neuronal cell functions and specific biochemical pathways are the targets of transcriptional regulation in HVC, including: 1) cell-cell and cell-substrate interactions (e.g., cadherin/catenin-mediated adherens junctions, collagen-mediated focal adhesions, and semaphorin-neuropilin/plexin axon guidance pathways); 2) cell excitability (e.g., potassium channel subfamilies, cholinergic and serotonergic receptors, neuropeptides and neuropeptide receptors); 3) signal transduction (e.g., calcium regulatory proteins, regulators of G-protein-related signaling); 4) cell proliferation/death, migration and differentiation (e.g., TGF-beta/BMP and p53 pathways); and 5) regulation of gene expression (candidate retinoid and steroid targets, modulators of chromatin/nucleolar organization). The overall direction of regulation suggest that processes related to cell stability are enhanced, whereas proliferation, growth and plasticity are largely suppressed in adult HVC, consistent with the observation that song in this songbird species is mostly stable in adulthood. Conclusions/Significance Our study represents one of the most comprehensive molecular genetic characterizations of a brain nucleus involved in a complex learned behavior in a vertebrate. The data indicate numerous targets for pharmacological and genetic manipulations of the song system, and provide novel insights into mechanisms that might play a role in the regulation of song behavior and/or vocal learning.


Genome Biology | 2014

Conserved syntenic clusters of protein coding genes are missing in birds

Peter V. Lovell; Morgan Wirthlin; Larry J. Wilhelm; Patrick Minx; Nathan H. Lazar; Lucia Carbone; Wesley C. Warren; Claudio V. Mello

BackgroundBirds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood.ResultsUsing comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species.ConclusionsTogether these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Impact of experience-dependent and -independent factors on gene expression in songbird brain

Jenny Drnevich; Kirstin Replogle; Peter V. Lovell; Thomas P. Hahn; Frank Johnson; Thomas Gerald Mast; Ernest J. Nordeen; Kathy W. Nordeen; Christy Strand; Sarah E. London; Motoko Mukai; John C. Wingfield; Arthur P. Arnold; Gregory F. Ball; Eliot A. Brenowitz; Juli Wade; Claudio V. Mello; David F. Clayton

Songbirds provide rich natural models for studying the relationships between brain anatomy, behavior, environmental signals, and gene expression. Under the Songbird Neurogenomics Initiative, investigators from 11 laboratories collected brain samples from six species of songbird under a range of experimental conditions, and 488 of these samples were analyzed systematically for gene expression by microarray. ANOVA was used to test 32 planned contrasts in the data, revealing the relative impact of different factors. The brain region from which tissue was taken had the greatest influence on gene expression profile, affecting the majority of signals measured by 18,848 cDNA spots on the microarray. Social and environmental manipulations had a highly variable impact, interpreted here as a manifestation of paradoxical “constitutive plasticity” (fewer inducible genes) during periods of enhanced behavioral responsiveness. Several specific genes were identified that may be important in the evolution of linkages between environmental signals and behavior. The data were also analyzed using weighted gene coexpression network analysis, followed by gene ontology analysis. This revealed modules of coexpressed genes that are also enriched for specific functional annotations, such as “ribosome” (expressed more highly in juvenile brain) and “dopamine metabolic process” (expressed more highly in striatal song control nucleus area X). These results underscore the complexity of influences on neural gene expression and provide a resource for studying how these influences are integrated during natural experience.


G3: Genes, Genomes, Genetics | 2017

A New Chicken Genome Assembly Provides Insight into Avian Genome Structure

Wesley C. Warren; LaDeana W. Hillier; Chad Tomlinson; Patrick Minx; Milinn Kremitzki; Tina Graves; Chris Markovic; Nathan Bouk; Kim D. Pruitt; Françoise Thibaud-Nissen; Valerie Schneider; Tamer Mansour; C. Titus Brown; Aleksey V. Zimin; R. J. Hawken; Mitch Abrahamsen; Alexis B. Pyrkosz; Mireille Morisson; Valerie Fillon; Alain Vignal; William Chow; Kerstin Howe; Janet E. Fulton; Marcia M. Miller; Peter V. Lovell; Claudio V. Mello; Morgan Wirthlin; Andrew S. Mason; Richard Kuo; David W. Burt

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts.


The Journal of Comparative Neurology | 2013

Digital atlas of the zebra finch (Taeniopygia guttata) brain: A high-resolution photo atlas

Harvey J. Karten; Agnieszka Brzozowska-Prechtl; Peter V. Lovell; Daniel D. Tang; Claudio V. Mello; Haibin Wang; Partha P. Mitra

We describe a set of new comprehensive, high‐quality, high‐resolution digital images of histological sections from the brain of male zebra finches (Taeniopygia guttata) and make them publicly available through an interactive website (http://zebrafinch.brainarchitecture.org/). These images provide a basis for the production of a dimensionally accurate and detailed digital nonstereotaxic atlas. Nissl‐ and myelin‐stained brain sections are provided in the transverse, sagittal, and horizontal planes, with the transverse plane approximating the more traditional Frankfurt plane. In addition, a separate set of brain sections in this same plane is stained for tyrosine hydroxylase, revealing the distribution of catecholaminergic neurons (dopaminergic, noradrenergic, and adrenergic) in the songbird brain. For a subset of sagittal sections we also prepared a corresponding set of drawings, defining and annotating various nuclei, fields, and fiber tracts that are visible under Nissl and myelin staining. This atlas of the zebra finch brain is expected to become an important tool for birdsong research and comparative studies of brain organization and evolution. J. Comp. Neurol. 521:3702–3715, 2013.


The Journal of Neuroscience | 2011

Serotonin, via HTR2 Receptors, Excites Neurons in a Cortical-like Premotor Nucleus Necessary for Song Learning and Production

William E. Wood; Peter V. Lovell; Claudio V. Mello; David J. Perkel

Serotonin (5-HT) is a neuromodulator that is important for neural development, learning and memory, mood, and perception. Dysfunction of the serotonin system is central to depression and other clinically important mood disorders and has been linked with learning deficits. In mammals, 5-HT release from the raphe nuclei in the brainstem can modulate the functional properties of cortical neurons, influencing sensory and motor processing. Birds also have serotonergic neurons in the dorsal raphe, suggesting that 5-HT plays similar roles in sensory and motor processing, perhaps modulating brain circuitry underlying birdsong. To investigate this possibility, we measured the effects of 5-HT on spontaneous firing of projection neurons in the premotor robust nucleus of the arcopallium in brain slices from male zebra finches. These neurons are thought be akin to cortical layer V pyramidal neurons. 5-HT dramatically and reversibly enhanced the endogenous firing of RA neurons. Using pharmacological agonists and antagonists in vitro, we determined this action is mediated via HTR2 receptors, which we verified are expressed by in situ hybridization. Finally, focal administration of the serotonin selective reuptake inhibitor fluvoxamine revealed that endogenous 5-HT is sufficient to mediate this effect in vivo. These findings reveal a modulatory action of serotonin on the physiology of the song system circuitry and suggest a novel role of serotonin in regulating song production and/or learning; further understanding of the role of 5-HT in this system may help illuminate the complex role of this neuromodulator in social interactions and motor plasticity in humans.


BMC Genomics | 2014

Comparative genomics reveals molecular features unique to the songbird lineage

Morgan Wirthlin; Peter V. Lovell; Erich D. Jarvis; Claudio V. Mello

BackgroundSongbirds (oscine Passeriformes) are among the most diverse and successful vertebrate groups, comprising almost half of all known bird species. Identifying the genomic innovations that might be associated with this success, as well as with characteristic songbird traits such as vocal learning and the brain circuits that underlie this behavior, has proven difficult, in part due to the small number of avian genomes available until recently. Here we performed a comparative analysis of 48 avian genomes to identify genomic features that are unique to songbirds, as well as an initial assessment of function by investigating their tissue distribution and predicted protein domain structure.ResultsUsing BLAT alignments and gene synteny analysis, we curated a large set of Ensembl gene models that were annotated as novel or duplicated in the most commonly studied songbird, the Zebra finch (Taeniopygia guttata), and then extended this analysis to 47 additional avian and 4 non-avian genomes. We identified 10 novel genes uniquely present in songbird genomes. A refined map of chromosomal synteny disruptions in the Zebra finch genome revealed that the majority of these novel genes localized to regions of genomic instability associated with apparent chromosomal breakpoints. Analyses of in situ hybridization and RNA-seq data revealed that a subset of songbird-unique genes is expressed in the brain and/or other tissues, and that 2 of these (YTHDC2L1 and TMRA) are highly differentially expressed in vocal learning-associated nuclei relative to the rest of the brain.ConclusionsOur study reveals novel genes unique to songbirds, including some that may subserve their unique vocal control system, substantially improves the quality of Zebra finch genome annotations, and contributes to a better understanding of how genomic features may have evolved in conjunction with the emergence of the songbird lineage.

Collaboration


Dive into the Peter V. Lovell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erich D. Jarvis

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Wesley C. Warren

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Minx

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge