Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter V. Simpson is active.

Publication


Featured researches published by Peter V. Simpson.


Angewandte Chemie | 2016

Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation

Peter V. Simpson; Laurance A. Watson; Adam Barlow; Genmiao Wang; Marie P. Cifuentes; Mark G. Humphrey

Large increases in molecular two-photon absorption, the onset of measurable molecular three-photon absorption, and record molecular four-photon absorption in organic π-delocalizable frameworks are achieved by incorporation of bis(diphosphine)ruthenium units with alkynyl linkages. The resultant ruthenium alkynyl-containing dendrimers exhibit strong multiphoton absorption activity through the biological and telecommunications windows in the near-infrared region. The ligated ruthenium units significantly enhance solubility and introduce fully reversible redox switchability to the optical properties. Increasing the ruthenium content leads to substantial increases in multiphoton absorption properties without any loss of optical transparency. This significant improvement in multiphoton absorption performance by incorporation of the organometallic units into the organic π-framework is maintained when the relevant parameters are scaled by molecular weights or number of delocalizable π-electrons. The four-photon absorption cross-section of the most metal-rich dendrimer is an order of magnitude greater than the previous record value.


Chemistry: A European Journal | 2017

Defining the Anti-Cancer Activity of Tricarbonyl Rhenium complexes: Induction of G2/M cell cycle arrest and Blockade of Aurora-A Kinase Phosphorylation

Peter V. Simpson; Ilaria Casari; Silvano Paternoster; Brian W. Skelton; Marco Falasca; Massimiliano Massi

Rhenium and ruthenium complexes containing N-heterocylic carbene (NHC) ligands and conjugated to indomethacin were prepared. The anticancer properties were probed against pancreatic cell lines, revealing a remarkable activity of the rhenium fragment as anticancer agent. The ruthenium complexes were found to be inactive against the same pancreatic cancer cell lines, either alone or in conjugation with indomethacin. An in-depth biological study revealed the origin of the anticancer properties of the rhenium tricarbonyl fragment, of which a complete elucidation had yet to be achieved. It was found that the rhenium complexes induce cell cycle arrest at the G2/M phase by inhibiting the phosphorylation of Aurora-A kinase. A preliminary study on the structure-activity relationship on a large family of these complexes revealed that the anticancer properties are mainly associated with the lability of the ancillary ligand, with inert complexes showing limited to no anticancer properties.


Dalton Transactions | 2015

Rhenium tetrazolato complexes coordinated to thioalkyl-functionalised phenanthroline ligands: synthesis, photophysical characterisation, and incubation in live HeLa cells

Melissa V. Werrett; Phillip J. Wright; Peter V. Simpson; Paolo Raiteri; Brian W. Skelton; Stefano Stagni; Alysia G. Buckley; Paul Rigby; Massimiliano Massi

Three new complexes of formulation fac-[Re(CO)3(diim)L], where diim is either 1,10-phenanthroline or 1,10-phenanthroline functionalised at position 5 by a thioalkyl chain, and L is either a chloro or aryltetrazolato ancillary ligand, were synthesised and photophysically characterised. The complexes exhibit phosphorescent emission with maxima around 600 nm, originating from triplet metal-to-ligand charge transfer states with partially mixed ligand-to-ligand charge transfer character. The emission is relatively long-lived, within the 200-400 ns range, and with quantum yields of 2-4%. The complexes were trialed as cellular markers in live HeLa cells, along with two previously reported rhenium tetrazolato complexes bound to unsubstituted 1,10-phenanthroline. All five complexes exhibit good cellular uptake and non-specific perinuclear localisation. Upon excitation at 405 nm, the emission from the rhenium complexes could be clearly distinguished from autofluorescence, as demonstrated by spectral detection within the live cells. Four of the complexes did not appear to be toxic, however prolonged excitation could result in membrane blebbing. No major sign of photobleaching was detected upon multiple imaging on the same cell sample.


Chemistry: A European Journal | 2015

Syntheses, Spectroscopic, Electrochemical, and Third-Order Nonlinear Optical Studies of a Hybrid Tris{ruthenium(alkynyl)/(2-phenylpyridine)}iridium Complex.

Huajian Zhao; Peter V. Simpson; Adam Barlow; Graeme J. Moxey; Mahbod Morshedi; Nivya Roy; Reji Philip; Chi Zhang; Marie P. Cifuentes; Mark G. Humphrey

The synthesis of fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-C≡C-1-C6H2-3,5-Et2-4-C≡CC6H4-4-C≡CH)}3] (10), which bears pendant ethynyl groups, and its reaction with [RuCl(dppe)2]PF6 to afford the heterobimetallic complex fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-C≡C-1-C6H2-3,5-Et2-4-C≡CC6H4-4-C≡C-trans-[RuCl(dppe)2])}3] (11) is described. Complex 10 is available from the two-step formation of iodo-functionalized fac-tris[2-(4-iodophenyl)pyridine]iridium(III) (6), followed by ligand-centered palladium-catalyzed coupling and desilylation reactions. Structural studies of tetrakis[2-(4-iodophenyl)pyridine-N,C1′](μ-dichloro)diiridium 5, 6, fac-[Ir{N,C1′-(2,2′-NC5H4C6H3-5′-C≡C-1-C6H2-3,5-Et2-4-C≡CH)}3] (8), and 10 confirm ligand-centered derivatization of the tris(2-phenylpyridine)iridium unit. Electrochemical studies reveal two (5) or one (6–10) Ir-centered oxidations for which the potential is sensitive to functionalization at the phenylpyridine groups but relatively insensitive to more remote derivatization. Compound 11 undergoes sequential Ru-centered and Ir-centered oxidation, with the potential of the latter significantly more positive than that of Ir(N,C′-NC5H4-2-C6H4-2)3. Ligand-centered π–π* transitions characteristic of the Ir(N,C′-NC5H4-2-C6H4-2)3 unit red-shift and gain in intensity following the iodo and alkynyl incorporation. Spectroelectrochemical studies of 6, 7, 9, and 11 reveal the appearance in each case of new low-energy LMCT bands following formal IrIII/IV oxidation preceded, in the case of 11, by the appearance of a low-energy LMCT band associated with the formal RuII/III oxidation process. Emission maxima of 6–10 reveal a red-shift upon alkynyl group introduction and arylalkynyl π-system lengthening; this process is quenched upon incorporation of the ligated ruthenium moiety on proceeding to 11. Third-order nonlinear optical studies of 11 were undertaken at the benchmark wavelengths of 800 nm (fs pulses) and 532 nm (ns pulses), the results from the former suggesting a dominant contribution from two-photon absorption, and results from the latter being consistent with primarily excited-state absorption.


Metallomics | 2017

Intracellular distribution and stability of a luminescent rhenium(I) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging

Jason L. Wedding; Hugh H. Harris; Christie A. Bader; Sally E. Plush; Rachel Mak; Massimiliano Massi; Douglas A. Brooks; Barry Lai; Stefan Vogt; Melissa V. Werrett; Peter V. Simpson; Brian W. Skelton; Stefano Stagni

Optical epifluorescence microscopy was used in conjunction with X-ray fluorescence imaging to monitor the stability and intracellular distribution of the luminescent rhenium(i) complex fac-[Re(CO)3(phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence imaging techniques. X-ray fluorescence also showed that the rhenium complex disrupted the homeostasis of some biologically relevant elements, such as chlorine, potassium and zinc.


PLOS ONE | 2016

A molecular probe for the detection of polar lipids in live cells

Christie A. Bader; Tetyana Shandala; Elizabeth A. Carter; Angela Ivask; Taryn Guinan; Shane M. Hickey; Melissa V. Werrett; Phillip J. Wright; Peter V. Simpson; Stefano Stagni; Nicolas H. Voelcker; Peter A. Lay; Massimiliano Massi; Sally E. Plush; Douglas A. Brooks

Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular compartments.


FEBS Letters | 2016

Imaging nuclear, endoplasmic reticulum and plasma membrane events in real time.

Christie A. Bader; Alexandra Sorvina; Peter V. Simpson; Phillip J. Wright; Stefano Stagni; Sally E. Plush; Massimiliano Massi; Douglas A. Brooks

Live cell imaging can provide important information on cellular dynamics; however, the full utilisation of this technology has been hampered by the limitations of imaging reagents. Metal‐based complexes have the potential to overcome many of the issues common to many current imaging agents. The rhenium (I)‐based complex fac‐[Re(CO)3(1,10‐phenanthroline)(4‐pyridyltetrazolate)], herein referred to as ReZolve‐ER™, shows promise as a live cell imaging agent with rapid cell uptake, low cytotoxicity, resistance to photobleaching and compatibility with multicolour imaging. ReZolve‐ER™ localised to the nuclear membrane/endoplasmic reticulum (ER) and allowed the detection of exocytotic events at the plasma membrane. Thus, we present a new imaging agent for monitoring live cell events in real time, which is ideal for imaging either short‐ or long‐time courses.


Inorganic Chemistry | 2017

Photochemical Processes in a Rhenium(I) Tricarbonyl N-Heterocyclic Carbene Complex Studied by Time-Resolved Measurements

Tatsuhiko Mukuta; Peter V. Simpson; Jamila G. Vaughan; Brian W. Skelton; Stefano Stagni; Massimiliano Massi; Kazuhide Koike; Osamu Ishitani; Ken Onda

We carried out time-resolved infrared (TR-IR) and emission lifetime measurements on a Re(I) carbonyl complex having an N-heterocyclic carbene ligand, namely, fac-[Re(CO)3(PyImPh)Br], under photochemically reactive (in solution in acetonitrile) and nonreactive (in solution in dichloromethane) conditions to investigate the mechanism of photochemical ligand substitution reactions. The TR-IR measurements revealed that no reaction occurs on a picosecond time scale and the cationic product, namely, fac-[Re(CO)3(PyImPh)(MeCN)]+, is produced on a nanosecond time scale only in solution in acetonitrile, which indicates that the reaction proceeds thermally from the excited state. Because no other products were observed by TR-IR, we concluded that this cationic product is an intermediate species for further reactions. The measurements of the temperature-dependent emission lifetime and analysis using transition-state theory revealed that the photochemical substitution reaction proceeds from a metal-to-ligand charge transfer excited state, the structure of which allows the potential coordination of a solvent molecule. Thus, the coordinating capacity of the solvent determines whether the reaction proceeds or not. This mechanism is different from those of photochemical reactions of other types of Re(I) carbonyl complexes owing to the unique characteristics of the carbene ligand.


Dalton Transactions | 2016

Silver(I), gold(I) and palladium(II) complexes of a NHC-pincer ligand with an aminotriazine core: a comparison with pyridyl analogues

Jamila G. Vaughan; Damien J. Carter; Andrew L. Rohl; Mark I. Ogden; Brian W. Skelton; Peter V. Simpson; David H. Brown

Dinuclear silver, di- and tetra-nuclear gold, and mononuclear palladium complexes with chelating C,N,C diethylaminotriazinyl-bridged bis(NHC) pincer ligands were prepared and characterised. The silver and gold complexes exist in a twisted, helical conformation in both the solution- and the solid state. In contrast, an analogous dinuclear gold complex with pyridyl-bridged NHCs exists in a linear conformation. Computational studies have been performed to rationalise the formation of twisted/helical vs. linear forms.


New Journal of Chemistry | 2016

Photophysical and photochemical studies of tricarbonyl rhenium(i) N-heterocyclic carbene complexes containing azide and triazolate ligands

Peter V. Simpson; Brian W. Skelton; Paolo Raiteri; Massimiliano Massi

Rhenium(I) N-heterocyclic carbene (NHC) complexes of the type fac-[Re(CO)3(NHC)L] with either azide or triazolate ancillary ligands L and pyridyl or pyrimidyl substituted imidazolyl units have been prepared and structurally characterised, and their photophysical and photochemical properties studied. All of the complexes exhibit phosphorescent emission from triplet metal-to-ligand (3MCLT) excited states, typical of tricarbonyl Re(I) complexes, with the triazolate bound complexes having higher quantum yields and longer decay lifetimes compared to the azide bound complexes. The complexes containing pyridyl substituted imidazolyl units are photoreactive when dissolved in acetonitrile and undergo photochemical CO dissociation, the rate of which is significantly greater in the azide cf. triazolate complex. The photochemical mechanism of the azide/pyridyl complex was analysed and appears to give the same products, albeit with different ratios, to previously reported complexes where L is a halide. A reaction mechanism is proposed.

Collaboration


Dive into the Peter V. Simpson's collaboration.

Top Co-Authors

Avatar

Brian W. Skelton

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie P. Cifuentes

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Mark G. Humphrey

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graeme J. Moxey

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christie A. Bader

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Sally E. Plush

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Douglas A. Brooks

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge