Péter Ván
Budapest University of Technology and Economics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Péter Ván.
Journal of Non-Equilibrium Thermodynamics | 2008
Péter Ván; Arkadi Berezovski; Jüri Engelbrecht
Abstract Dynamic degrees of freedom and internal variables are treated in a uniform way. The unification is achieved by means of the introduction of a dual internal variable. This duality provides the corresponding evolution equations depending on whether the Onsager–Casimir reciprocity relations are satisfied or not.
Annalen der Physik | 2003
Péter Ván
Weakly nonlocal thermodynamic theories are critically revisited. A relocalized, irreversible thermodynamic theory of nonlocal phenomena is given, based on a modified form of the entropy current and new kind of internal variables, the so called current multipliers. The treatment is restricted to deal with nonlocality connected to dynamic thermodynamic variables. Several classical equations are derived, including Guyer-Krumhansl, Ginzburg-Landau and Cahn-Hilliard type equations.
Annalen der Physik | 2012
Péter Ván; T. Fülöp
A linear irreversible thermodynamic framework of heat conduction in rigid conductors is introduced. The deviation from local equilibrium is characterized by a single internal variable and a current intensity factor. A general constitutive evolution equation of the current density of the internal energy is derived by introducing linear relationship between the thermodynamic forces and fluxes. The Fourier, Maxwell-Cattaneo-Vernotte, Guyer-Krumhansl, Jeffreys type and Green-Naghdi type equations of heat conduction are obtained as special cases. The universal character of the approach is demonstrated by two examples. Solutions illustrating the properties of the equation with jump boundary conditions are given.
Physical Review E | 2011
T.S. Biró; Péter Ván
Nonextensive thermodynamics is criticized by the statement that the zeroth law cannot be satisfied with nonadditive composition rules [corrected]. In this paper we determine the general functional form of those nonadditive composition rules that are compatible with the zeroth law of thermodynamics. We find that this general form is additive for the formal logarithms of the original quantities and the familiar relations of thermodynamics apply to these. Our result offers a possible solution to the long-standing questions about equilibrium between extensive and nonextensive systems or systems with different nonextensivity parameters.
European Physical Journal A | 2013
Tamás Bíró; Gergely Gabor Barnafoldi; Péter Ván
We derive Tsallis entropy, Sq, from universal thermostat independence and obtain the functional form of the corresponding generalized entropy-probability relation. Our result for finite thermostats interprets thermodynamically the subsystem temperature, T1, and the index q in terms of the temperature, T, entropy, S, and heat capacity, C of the reservoir as T1 = T exp(-S/C) and q = 1 - 1/C. In the infinite C limit, irrespective to the value of S, the Boltzmann-Gibbs approach is fully recovered. We apply this framework for the experimental determination of the original temperature of a finite thermostat, T, from the analysis of hadron spectra produced in high energy collisions, by analyzing frequently considered simple models of the quark-gluon plasma.
European Physical Journal-special Topics | 2008
Péter Ván; T.S. Biró
Abstract.Causality and stability in relativistic dissipative hydrodynamics are important conceptual issues. We argue that causality is not restricted to hyperbolic set of differential equations. E.g. heat conduction equation can be causal considering the physical validity of the theory. Furthermore we propose a new concept of relativistic internal energy that clearly separates the dissipative and non-dissipative effects. We prove that with this choice we remove all known instabilities of the linear response approximation of viscous and heat conducting relativistic fluids. In this paper the Eckart choice of the velocity field is applied.
Physics Letters B | 2012
Péter Ván; T.S. Biró
Abstract Relativistic thermodynamics is derived from kinetic equilibrium in a general frame. Based on a novel interpretation of Lagrange multipliers in the equilibrium state we obtain a generic stable but first order relativistic dissipative hydrodynamics. Although this was believed to be impossible, we circumvent this difficulty by a specific handling of the heat flow.
Journal of Mathematical Physics | 2005
Vito Antonio Cimmelli; Péter Ván
The role of gradient dependent constitutive spaces is investigated on the example of Extended Thermodynamics of rigid heat conductors. Different levels of nonlocality are developed and the different versions of extended thermodynamics are classified. The local form of the entropy density plays a crucial role in the investigations. The entropy inequality is solved under suitable constitutive assumptions. Balance form of evolution equations is obtained in special cases. Closure relations are derived on a phenomenological level.
Physics Letters A | 2001
Péter Ván
Abstract Examples of irreversible thermodynamic theory of nonlocal phenomena are given, based on generalized entropy current. Thermodynamic currents and forces are identified to derive the Guyer–Krumhansl and Cahn–Hilliard equations. In the latter case Gurtins rate dependent additional term is received through the thermodynamic approach.
Journal of Non-Equilibrium Thermodynamics | 2016
Soma Both; Balázs Czél; Tamás Fülöp; Gyula Gróf; Ákos Gyenis; Róbert Kovács; Péter Ván; József Verhás
Abstract We report heat pulse experiments at room temperature that cannot be described by Fouriers law. The experimental data are modeled properly by the Guyer–Krumhansl equation, in its over-diffusion regime. The phenomenon may be due to conduction channels with differing conductivities and parallel to the direction of the heat flux.