Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter van Dongen is active.

Publication


Featured researches published by Peter van Dongen.


Physical Review B | 2001

Quantum critical point in a periodic Anderson model

Peter van Dongen; Kingshuk Majumdar; Carey Huscroft; Fu-Chun Zhang

We investigate the symmetric periodic Anderson model (PAM) on a three-dimensional cubic lattice with nearest-neighbor hopping and hybridization matrix elements. Using Gutzwillers variational method and the Hubbard-III approximation (which corresponds to an exact solution of the appropriate Falicov-Kimball model in infinite dimensions) we demonstrate the existence of a quantum critical point at zero temperature. Below a critical value


Archive | 2017

Grundlagen der Statistischen Physik

Peter van Dongen

{V}_{c}


Archive | 2017

Die statistischen Gesamtheiten

Peter van Dongen

of the hybridization (or above a critical interaction


Archive | 2015

Kurven-, Flächen- und Volumenintegrale

Peter van Dongen

{U}_{c})


Archive | 2015

Vektoren, Matrizen und Determinanten

Peter van Dongen

the system is an insulator in Gutzwillers and a semimetal in Hubbards approach, whereas above


Archive | 2015

Folgen, Reihen und Rekursionen

Peter van Dongen

{V}_{c}


Archive | 2015

Funktionen mehrerer Veränderlicher

Peter van Dongen

(below


Archive | 2015

Lösungen zu den Übungsaufgaben

Peter van Dongen

{U}_{c})


Archive | 2015

Funktionen einer reellen Variablen

Peter van Dongen

it behaves like a metal in both approximations. These predictions are compared with the density of states of the d and f bands calculated from quantum Monte Carlo and numerical renormalization group calculations. Our conclusion is that the half-filled symmetric PAM contains a metal-semimetal transition, not a metal-insulator transition as has been suggested previously.


Archive | 2015

Integration und Integrale

Peter van Dongen

Nachdem die Vielteilchensysteme im vorigen Kapitel hinsichtlich ihrer makroskopischen Eigenschaften untersucht wurden, widmen wir uns nun der mikroskopischen Begrundung der Thermodynamik. Da die makroskopischen Eigenschaften der Materie letztlich durch ihre atomare Struktur und durch die Wechselwirkungen zwischen den Teilchen auf atomarer Skala bestimmt werden, kommt man nicht umhin, die Physik der Mikrowelt ernst zu nehmen und Vielteilchensysteme im Rahmen der Quantenmechanik zu untersuchen.

Collaboration


Dive into the Peter van Dongen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kingshuk Majumdar

Grand Valley State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge