Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Varga is active.

Publication


Featured researches published by Peter Varga.


ACS Nano | 2012

Guided Assembly of Gold Colloidal Nanoparticles on Silicon Substrates Prepatterned by Charged Particle Beams

Miroslav Kolíbal; Martin Konečný; Filip Ligmajer; David Škoda; Tomáš Vystavěl; Jakub Zlámal; Peter Varga; Tomáš Šikola

Colloidal gold nanoparticles represent technological building blocks which are easy to fabricate while keeping full control of their shape and dimensions. Here, we report on a simple two-step maskless process to assemble gold nanoparticles from a water colloidal solution at specific sites of a silicon surface. First, the silicon substrate covered by native oxide is exposed to a charged particle beam (ions or electrons) and then immersed in a HF-modified solution of colloidal nanoparticles. The irradiation of the native oxide layer by a low-fluence charged particle beam causes changes in the type of surface-terminating groups, while the large fluences induce even more profound modification of surface composition. Hence, by a proper selection of the initial substrate termination, solution pH, and beam fluence, either positive or negative deposition of the colloidal nanoparticles can be achieved.


Nano Letters | 2013

Control and near-field detection of surface plasmon interference patterns.

Petr Dvořák; Tomáš Neuman; Lukáš Břínek; Tomáš Šamořil; Radek Kalousek; Petr Dub; Peter Varga; Tomáš Šikola

The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.


Nanotechnology | 2014

Ultrasmooth metallic foils for growth of high quality graphene by chemical vapor deposition

Pavel Procházka; Jindřich Mach; Dominik Bischoff; Zuzana Lišková; Petr Dvořák; Marek Vaňatka; Pauline Simonet; Anastasia Varlet; Dušan Hemzal; Martin Petrenec; Lukáš Kalina; Miroslav Bartošík; Klaus Ensslin; Peter Varga; Jan Čechal; Tomáš Šikola

Synthesis of graphene by chemical vapor deposition is a promising route for manufacturing large-scale high-quality graphene for electronic applications. The quality of the employed substrates plays a crucial role, since the surface roughness and defects alter the graphene growth and cause difficulties in the subsequent graphene transfer. Here, we report on ultrasmooth high-purity copper foils prepared by sputter deposition of Cu thin film on a SiO2/Si template, and the subsequent peeling off of the metallic layer from the template. The surface displays a low level of oxidation and contamination, and the roughness of the foil surface is generally defined by the template, and was below 0.6 nm even on a large scale. The roughness and grain size increase occurred during both the annealing of the foils, and catalytic growth of graphene from methane (≈1000 °C), but on the large scale still remained far below the roughness typical for commercial foils. The micro-Raman spectroscopy and transport measurements proved the high quality of graphene grown on such foils, and the room temperature mobility of the graphene grown on the template stripped foil was three times higher compared to that of one grown on the commercial copper foil. The presented high-quality copper foils are expected to provide large-area substrates for the production of graphene suitable for electronic applications.


Nano Letters | 2014

Real-Time Observation of Collector Droplet Oscillations during Growth of Straight Nanowires

Miroslav Kolíbal; Tomáš Vystavěl; Peter Varga; Tomáš Šikola

A liquid droplet sitting on top of a pillar is crucially important for semiconductor nanowire growth via a vapor-liquid-solid (VLS) mechanism. For the growth of long and straight nanowires, it has been assumed so far that the droplet is pinned to the nanowire top and any instability in the droplet position leads to nanowire kinking. Here, using real-time in situ scanning electron microscopy during germanium nanowire growth, we show that the increase or decrease in the droplet wetting angle and subsequent droplet unpinning from the growth interface may also result in the growth of straight nanowires. Because our argumentation is based on terms and parameters common for VLS-grown nanowires, such as the geometry of the droplet and the growth interface, these conclusions are likely to be relevant to other nanowire systems.


Journal of Applied Physics | 2011

In-situ magnetic nano-patterning of Fe films grown on Cu(100)

Sameena Shah Zaman; Petr Dvořák; R. Ritter; Andreas Buchsbaum; Daniel Stickler; Hans Peter Oepen; Michael Schmid; Peter Varga

Metastable paramagnetic face-centered cubic (fcc) Fe films grown on a Cu(100) single crystal at room temperature can be transformed to the ferromagnetic body-centered cubic (bcc) structure by ion irradiation. We have employed this technique to write small ferromagnetic patches by Ar+ irradiation through a gold coated SiN mask with regularly arranged 80-nm diameter holes, which was placed on top of the as-prepared fcc Fe films. Nanopatterning was performed on both 8-monolayer (ML) Fe films grown in ultrahigh vacuum as well as 22-ML films stabilized by dosing carbon monoxide during growth. The structural transformation of these nano-patterned films was investigated using scanning tunneling microscopy. In both 8 and 22-ML fcc Fe films, the bcc needles are found to protrude laterally out of the irradiated part of the sample, limiting the resolution of the technique to a few 10 nm. The magnetic transformation was confirmed by magnetic force microscopy.


Applied Physics Letters | 2008

Ion-beam induced fcc-bcc transition in ultrathin Fe films for ferromagnetic patterning

W. Rupp; Albert Biedermann; B. Kamenik; R. Ritter; Ch. Klein; E. Platzgummer; Michael Schmid; Peter Varga

Ar+ ion irradiation is used to induce a structural change from fcc to bcc in a 1.5nm thick Fe film epitaxially grown on a Cu(100) crystal. Scanning tunneling microscopy and low-energy electron diffraction show the nucleation of bcc nanocrystals, which grow with increasing ion dose. As a consequence of the structural change, the irradiated iron film becomes strongly ferromagnetic at room temperature. We present a model for the process of the transformation and demonstrate writing a magnetic pattern at the 100nm scale by ion-beam projection lithography.


Review of Scientific Instruments | 2008

Time-of-flight spectroscopy of the energy distribution of laser-ablated atoms and ions

Andreas Buchsbaum; G. Rauchbauer; Peter Varga; Michael Schmid

The growth of ultrathin films, deposited by laser ablation, crucially depends on the energy of the ablated species. Therefore, a time-of-flight (TOF) spectrometer has been constructed and measurements have been carried out in order to determine the energy distribution of laser-ablated Fe and Pt atoms and ions in the plasma created by nanosecond pulses of a frequency-doubled neodymium doped yttrium aluminum garnet laser. The experiments have been performed in ultrahigh vacuum at relatively low laser power. For measuring the spectra of the neutrals, a cross-beam electron source for postionization and electric as well as magnetic fields for repelling the ions are employed. Nevertheless, measurements of neutral particles are restricted to low plasma densities due to electrostatic shielding within the plasma, leading to an inefficient deflection of charged particles by electrostatic and magnetic fields. Test measurements have been performed by utilizing the TOF spectrometer as a pressure gauge and also by chopping the electron beam, running the TOF spectrometer as a residual gas mass spectrometer. The spectra of the laser-ablated plasmas have shown plasma conditions with a Debye length of approximately 10(-4) m, densities of 10(15)-10(16) m(-3) and ion energies up to 150 eV. Neutral spectra have shown an unexpectedly low fraction of neutrals (10(-3)-10(-4)) and hyperthermal energies up to several 10 eV, possibly contributed by recombination of ions and electrons in the plasma. Even though gas spectra had demonstrated the expected sensitivity of the TOF spectrometer for low-energy neutrals, no thermally evaporated neutral atoms could be found.


RSC Advances | 2015

Real-time observation of self-limiting SiO2/Si decomposition catalysed by gold silicide droplets

Petr Bábor; Radek Duda; Josef Polčák; Stanislav Průša; Michal Potoček; Peter Varga; Jan Čechal; Tomáš Šikola

The thermal decomposition of thin SiO2 layers on silicon substrates draws significant attention due to its high technological importance in the semiconductor industry and in all relevant fields where silicon is employed as a substrate or part of an active device. Understanding of the underlying processes on silicon surfaces is therefore of fundamental importance. Here we show that the presence of gold silicide (AuSi) catalytically enhances the decomposition of SiO2 layers on a Si substrate, which proceeds via void nucleation under the positions of Au nanoparticles and subsequent lateral growth of the void. Our real-time secondary electron microscopy data reveal that the presence of a AuSi droplet within the void enhances the reaction rate due to an increased pre-exponential factor of the rate limiting step (i.e., SiO desorption at temperatures beyond 700 °C). While the SiO2 is decomposed the silicon surface in the open voids is covered by an Au monolayer. Consequently, as the void grows, the AuSi droplet is depleted of gold and the reaction rate enhancement is terminated when the supply of gold stops. Hence, the size of the pits is determined by the initial size of the Au nanoparticle. Our work thus provides insight into Au-enhanced SiO2 decomposition and its self-limiting nature offers a way for the preparation of nanoscale features with nanometer precision.


Applied Physics Letters | 2013

Ion-beam-induced magnetic and structural phase transformation of Ni-stabilized face-centered-cubic Fe films on Cu(100)

Jonáš Gloss; Sameena Shah Zaman; Jakub Jonner; Zbynek Novotny; Michael Schmid; Peter Varga; Michal Urbánek

Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phase diagram revealing the transformable region is presented.


Optics Express | 2017

Imaging of near-field interference patterns by aperture-type SNOM – influence of illumination wavelength and polarization state

Petr Dvořák; Zoltán Édes; Michal Kvapil; Tomáš Šamořil; Filip Ligmajer; Martin Hrtoň; Radek Kalousek; Vlastimil Křápek; Petr Dub; Jiří Spousta; Peter Varga; Tomáš Šikola

Scanning near-field optical microscopy (SNOM) in combination with interference structures is a powerful tool for imaging and analysis of surface plasmon polaritons (SPPs). However, the correct interpretation of SNOM images requires profound understanding of principles behind their formation. To study fundamental principles of SNOM imaging in detail, we performed spectroscopic measurements by an aperture-type SNOM setup equipped with a supercontinuum laser and a polarizer, which gave us all the degrees of freedom necessary for our investigation. The series of wavelength- and polarization-resolved measurements, together with results of numerical simulations, then allowed us to identify the role of individual near-field components in formation of SNOM images, and to show that the out-of-plane component generally dominates within a broad range of parameters explored in our study. Our results challenge the widespread notion that this component does not couple to the aperture-type SNOM probe and indicate that the issue of SNOM probe sensitivity towards the in-plane and out-of-plane near-field components - one of the most challenging tasks of near field interference SNOM measurements - is not yet fully resolved.

Collaboration


Dive into the Peter Varga's collaboration.

Top Co-Authors

Avatar

Michael Schmid

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tomáš Šikola

Brno University of Technology

View shared research outputs
Top Co-Authors

Avatar

Andreas Buchsbaum

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Petr Dvořák

Brno University of Technology

View shared research outputs
Top Co-Authors

Avatar

Sameena Shah Zaman

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

G. Rauchbauer

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Ritter

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Filip Ligmajer

Brno University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jan Čechal

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Miroslav Kolíbal

Brno University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge