Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter W. de Jong is active.

Publication


Featured researches published by Peter W. de Jong.


Entomologia Experimentalis Et Applicata | 2005

Temporal and host-related variation in frequencies of genes that enable Phyllotreta nemorum to utilize a novel host plant, Barbarea vulgaris

Jens Kvist Nielsen; Peter W. de Jong

The flea beetle, Phyllotreta nemorum L. (Coleoptera: Chrysomelidae), is an intermediate specialist feeding on a small number of plants within the family Brassicaceae. The most commonly used host plant is Sinapis arvensis L., whereas the species is found more rarely on Cardaria draba (L.) Desv., Barbarea vulgaris R.Br., and cultivated radish (Raphanus sativus L.). The interaction between flea beetles and Barbarea vulgaris ssp. arcuata (Opiz.) Simkovics seems to offer a good opportunity for experimental studies of coevolution. The plant is polymorphic, as it contains one type (the P‐type) that is susceptible to all flea beetle genotypes, and another type (the G‐type) that is resistant to some genotypes. At the same time, the flea beetle is also polymorphic, as some genotypes can utilize the G‐type whereas others cannot. The ability to utilize the G‐type of B. vulgaris ssp. arcuata is controlled by major dominant genes (R‐genes). The present investigation measured the frequencies of flea beetles with R‐genes in populations living on different host plants in 2 years (1999 and 2003). Frequencies of beetles with R‐genes were high in populations living on the G‐type of B. vulgaris ssp. arcuata in both years. Frequencies of beetles with R‐genes were lower in populations living on other host plants, and declining frequencies were observed in five out of six populations living on S. arvensis. Selection in favour of R‐genes in populations living on B. vulgaris is the most likely mechanism to account for the observed differences in the relative abundance of R‐genes in flea beetle populations utilizing different host plants. A geographic mosaic with differential levels of interactions between flea beetles and their host plants was demonstrated.


Journal of Insect Science | 2009

Genetic differentiation between resistance phenotypes in the phytophagous flea beetle, Phyllotreta nemorum.

Peter W. de Jong; Casper J. Breuker; Helene de Vos; Kim M.C.A. Vermeer; Keiko Oku; Patrick Verbaarschot; Jens Kvist Nielsen; Paul M. Brakefield

Abstract The flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae) is genetically polymorphic for resistance against the defences of one of its host plants, Barbarea vulgaris R.Br. (Brassicales: Brassicaceae). Whereas resistant flea beetles are able to use B. vulgaris as well as other cruciferous plants as food, non-resistant beetles cannot survive on B. vulgaris. This limitation to host plant use of non-resistant beetles could potentially lead to asymmetric gene flow and some degree of genetic isolation between the different resistance-genotypes. Therefore, we studied the extent of genetic differentiation at neutral allozyme loci between samples of flea beetles that were collected at different locations and first tested for resistance phenotype. Since earlier work has shown a weak, but significant, effect of geographical distance between the samples on their genetic differentiation, in the present study variation at the neutral allozyme loci in P. nemorum was partitioned between geographical distance and resistance-phenotype. Both sources independently contributed statistically significantly to population differentiation. Thus, there appears to be a limitation to genetic exchange between the resistant and non-resistant flea beetles when corrections are made for their geographic differentiation. This is consistent with the presence of some degree of host race formation in this flea beetle.


Entomologia Experimentalis Et Applicata | 2002

Host plant use of Phyllotreta nemorum: do coadapted gene complexes play a role?

Peter W. de Jong; Jens Kvist Nielsen

The view of (insect) populations as assemblages of local subpopulations connected by gene flow is gaining ground. In such structured populations, local adaptation may occur. In phytophagous insects, one way in which local adaptation has been demonstrated is by performing reciprocal transplant experiments where performance of insects on native and novel host plants are compared. Trade‐offs are assumed to be responsible for a negative correlation in performance on alternative host plants. Due to mixed results of these experiments, the importance of trade‐offs in host plant use of phytophagous insects has been under discussion. Here we propose that another genetic mechanism, the evolution of coadapted gene complexes, might also be associated with local adaptation. In this case, however, transplant experiments might not reveal any local adaptation until hybridization takes place. We review the results we have obtained in our work on the host plant use of the flea beetle Phyllotreta nemorum L. (Coleoptera: Chrysomelidae: Alticinae), and propose a hypothesis involving coadapted genes to explain the distribution of genes that render P. nemorum resistant to defences of one of its host plants, Barbarea vulgaris R. Br. (Cruciferae).


Journal of Insect Behavior | 2004

Inter- and Intraspecific Effects of Volatile and Nonvolatile Sex Pheromones on Males, Mating Behavior, and Hybridization in Eretmocerus mundus and E. eremicus (Hymenoptera: Aphelinidae)

M.J. Ardeh; Peter W. de Jong; A.J.M. Loomans; Joop C. van Lenteren

Eretmocerus species (Hym. Aphelinidae) are solitary parasitoids of Bemisia tabaci (Gennadius). Mate finding and mating behavior of two species, E. mundus and E. eremicus, were studied under laboratory conditions. We used three populations of Eretmocerus: typical arrhenotokous populations of E. eremicus (from USA) and E. mundus (from Spain), and an atypical thelytokous population of E. mundus (from Australia). We studied the intra- and interspecific responses of males to volatile and nonvolatile components of the female sex pheromones, mating behavior, and hybridization between populations and species. In both arrhenotokous populations, males reacted to volatile pheromones by walking toward conspecific virgin females. Males also reacted to nonvolatile pheromones by spending more time on and around patches on leaves of poinsettia plants that had been exposed to virgin females. Males of E. eremicus showed the same reaction to the nonvolatile sex pheromone of E. mundus females, but E. mundus males did not show any reaction to the nonvolatile sex pheromone of E. eremicus. There was no response of males of both species to thelytokous females of E. mundus. In both species three phases were distinguished in the mating behavior: premating, mating, and postmating. The duration of the phases differed between the three populations. Successful copulation between the two Eretmocerus species did not occur. In contrast, we recorded some successful copulations between Australian males and Spanish females of E. mundus, but they did not produce any hybrid females.


Arthropod-plant Interactions | 2015

Varied responses by yeast-like symbionts during virulence adaptation in a monophagous phloem-feeding insect

Jedeliza B. Ferrater; Alberto I. Naredo; Maria Liberty P. Almazan; Peter W. de Jong; Marcel Dicke; Finbarr G. Horgan

Abstract This study examines the three-way interaction between symbionts, insect herbivores and their host plants during adaptation to resistant crop varieties. We conducted a long-term selection study (20 generations of continuous rearing) with a monophagous phloem-feeder, the brown planthopper [Nilaparvata lugens (Stål)], on several resistant rice (Oryza sativa L.) varieties. Planthopper fitness and the abundance of yeast-like symbionts (YLS) were monitored throughout the selection process. N. lugens populations collected from six regions in the Philippines adapted to the resistant varieties as noted by increasing body size and increased egg-laying. Adaptation was partially through physiological and behavioral changes apparent during feeding: Planthoppers on resistant plants had relatively high levels of xylem feeding compared with planthoppers on susceptible plants. YLS densities were highly dependent on the host rice variety. However, there were no consistent trends in YLS density during host plant switching and virulence adaptation: Compared to densities in planthoppers on the standard susceptible variety Taichung Native 1 (TN1), YLS densities were consistently higher on PTB33 (resistant), similar on IR62 (resistant) and IR65482 (moderately resistant) but lower on IR22 (susceptible). Furthermore, YLS densities often remained the same despite improved planthopper fitness over generations. Our results do not support the hypothesis that changes in YLS density mediate planthopper adaptation to resistant varieties. However, slight reductions in YLS densities toward the end of selection on TN1, IR22 and IR62 may indicate that YLS have lower functional significance where varieties and environmental conditions are constant between generations.


Entomologia Experimentalis Et Applicata | 2017

It is time to bridge the gap between exploring and exploiting: prospects for utilizing intraspecific genetic variation to optimize arthropods for augmentative pest control – a review

S.T.E. Lommen; Peter W. de Jong; Bart A. Pannebakker

Intraspecific genetic variation in arthropods is often studied in the context of evolution and ecology. Such knowledge, however, can also be very usefully applied to biological pest control. Selection of genotypes with optimal trait values may be a powerful tool to develop more effective biocontrol agents. Although it has repeatedly been proposed, this approach is still hardly applied in the current commercial development of arthropod agents for pest control. In this perspective study, we call to take advantage of the increasing knowledge on the genetics underlying intraspecific variation to improve biological control agents. We argue that it is timely now because at present both the need and the technical possibilities for implementation exist, as there is (1) increased economic importance of biocontrol, (2) reduced availability of exotic biocontrol agents due to stricter legislation, and (3) increased availability of genetic information on non‐model species. We present a step‐by‐step approach towards the exploitation of intraspecific genetic variation for biocontrol, outline that knowledge of the underlying genetic mechanisms is essential for success, and indicate how new molecular techniques can facilitate this. Finally, we exemplify this procedure by two case studies, one focussing on a target trait – offspring sex ratio – across species of hymenopteran parasitoids, and the other on a target species – the two‐spot ladybird beetle – where wing length and body colouration can be optimized for aphid control. With this overview, we aim to inspire scientific researchers and biocontrol agent producers to start collaborating on the use of genetic variation for the improvement of natural enemies.


Biocontrol | 2013

Releases of a natural flightless strain of the ladybird beetle Adalia bipunctata reduce aphid-born honeydew beneath urban lime trees

S.T.E. Lommen; Thomas C. Holness; Alfons J. van Kuik; Peter W. de Jong; Paul M. Brakefield

Aphids can cause major environmental problems in urban areas. One important problem is the annual outbreaks of lime aphid, Eucallipterus tiliae (L.) (Hemiptera: Aphididae), which spoil the surroundings of lime trees by depositing honeydew. To date no environmentally friendly method has been demonstrated to yield effective control of lime aphids. Attempts are made in some cities to control lime aphids by releasing larvae of the native two-spot ladybird beetle, Adalia bipunctata (L.) (Coleoptera: Coccinellidae). However, it is known that adult ladybird beetles disperse soon after release, and there is little indication they provide control of the aphids. Here, we demonstrate experimentally that releases of a flightless strain of A. bipunctata, obtained from natural variation in wing length, can reduce the impact of honeydew from lime aphid outbreaks on two species of lime in an urban environment. Both larvae and adult beetles were released, and we discuss the contribution of the flightless adults to the decline in honeydew.


PLOS ONE | 2017

Contrasting effects of heat pulses on different trophic levels, an experiment with a herbivore-parasitoid model system

Stijn J. J. Schreven; Enric Frago; Annemiek Stens; Peter W. de Jong; Joop J. A. van Loon; Daniel E. Naya

Under predicted global climate change, species will be gradually exposed to warmer temperatures, and to a more variable climate including more intense and more frequent heatwaves. Increased climatic variability is expected to have different effects on species and ecosystems than gradual warming. A key challenge to predict the impact of climate change is to understand how temperature changes will affect species interactions. Herbivorous insects and their natural enemies belong to some of the largest groups of terrestrial animals, and thus they have a great impact on the functioning of ecosystems and on the services these ecosystems provide. Here we studied the life history traits of the plant-feeding insect Plutella xylostella and its specialist endoparasitoid Diadegma semiclausum, when exposed to a daily heat pulse of 5 or 10°C temperature increase during their entire immature phase. Growth and developmental responses differed with the amplitude of the heat pulse and they were different between host and parasitoid, indicating different thermal sensitivity of the two trophic levels. With a +5°C heat pulse, the adult parasitoids were larger which may result in a higher fitness, whereas a +10°C heat pulse retarded parasitoid development. These results show that the parasitoid is more sensitive than its host to brief intervals of temperature change, and this results in either positive or negative effects on life history traits, depending on the amplitude of the heat pulse. These findings suggest that more extreme fluctuations may disrupt host-parasitoid synchrony, whereas moderate fluctuations may improve parasitoid fitness.


PLOS ONE | 2011

Rapid Establishment of a Regular Distribution of Adult Tropical Drosophila Parasitoids in a Multi-Patch Environment by Patch Defence Behaviour

Peter W. de Jong; Lia Hemerik; Gerrit Gort; Jacques J. M. van Alphen

Females of the larval parasitoid of Drosophila, Asobara citri, from sub-Saharan Africa, defend patches with hosts by fighting and chasing conspecific females upon encounter. Females of the closely related, palearctic species Asobara tabida do not defend patches and often search simultaneously in the same patch. The effect of patch defence by A. citri females on their distribution in a multi-patch environment was investigated, and their distributions were compared with those of A. tabida. For both species 20 females were released from two release-points in replicate experiments. Females of A. citri quickly reached a regular distribution across 16 patches, with a small variance/mean ratio per patch. Conversely, A. tabida females initially showed a clumped distribution, and after gradual dispersion, a more Poisson-like distribution across patches resulted (variance/mean ratio was closer to 1 and higher than for A. citri). The dispersion of A. tabida was most probably an effect of exploitation: these parasitoids increasingly made shorter visits to already exploited patches. We briefly discuss hypotheses on the adaptive significance of patch defence behaviour or its absence in the light of differences in the natural history of both parasitoid species, notably the spatial distribution of their hosts.


Evolutionary Ecology | 2011

Detection of refuge from enemies through phenological mismatching in multitrophic interactions requires season-wide estimation of host abundance

Niels A. G. Kerstes; Peter W. de Jong

The concept of “enemy-free space” (EFS) refers to ways of living that reduce or eliminate the vulnerability of a species to natural enemies. It has been invoked to explain host shifts of phytophagous insects. A demonstrated cause of EFS is escape from enemies in time, through phenological mismatching of herbivore development and enemy occurrence, leading to low percentages of predation/parasitism of herbivores occurring at a certain time. The mere measurement of percentage parasitism, however, is not sufficient to demonstrate EFS in certain cases. Here we present such a case, where parasitism was studied of a phytophagous insect (Phyllotreta nemorum), using two different host plant species in the field: an atypical, relatively rarely used, plant (Barbarea vulgaris), and a more widely used one (Sinapis arvensis). At one location we found a paradoxical result: on each separate sampling day throughout the season the percentage of parasitism of P. nemorum using a patch of B. vulgaris was not significantly different from, or even significantly higher than on a nearby patch of S. arvensis. The overall season-wide proportion parasitism of the flea beetle cohort using the B. vulgaris patch, however, was lower. We conclude that, in the year and at the location we studied, the patch of B. vulgaris provided enemy-free space to the herbivore in the form of a temporal refuge, and that the importance of enemy-free space in the use of an atypical host plant should be evaluated on the basis of season-wide sampling, including estimation of host population size.

Collaboration


Dive into the Peter W. de Jong's collaboration.

Top Co-Authors

Avatar

Joop C. van Lenteren

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lia Hemerik

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Marcel Dicke

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Lidwien Raak-van den Berg

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Keiko Oku

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik H. Poelman

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Gerrit Gort

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge