Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter W. Shearer is active.

Publication


Featured researches published by Peter W. Shearer.


Journal of Integrated Pest Management | 2014

Biology, Ecology, and Management of Brown Marmorated Stink Bug (Hemiptera: Pentatomidae)

Kevin B. Rice; Chris J. Bergh; Erik J. Bergmann; D. J. Biddinger; Christine Dieckhoff; Galen P. Dively; Hannah Fraser; Tara D. Gariepy; George C. Hamilton; Tim Haye; Ames Herbert; Kim A. Hoelmer; Cerruti R. R. Hooks; Ashley S. Jones; Greg Krawczyk; Thomas P. Kuhar; Holly M. Martinson; William Mitchell; Anne L. Nielsen; Doug G. Pfeiffer; Michael J. Raupp; Cesar Rodriguez-Saona; Peter W. Shearer; Paula M. Shrewsbury; P. Dilip Venugopal; Joanne Whalen; Nik G. Wiman; Tracy C. Leskey; John F. Tooker

Brown marmorated stink bug, Halyomorpha halys Stal, is an invasive, herbivorous insect species that was accidentally introduced to the United States from Asia. First discovered in Allentown, PA, in 1996, H. halys has now been reported from at least 40 states in the United States. Additional invasions have been detected in Canada, Switzerland, France, Germany, Italy, and Lichtenstein, suggesting this invasive species could emerge as a cosmopolitan pest species. In its native range, H. halys is classified as an outbreak pest; however, in North America, H. halys has become a major agricultural pest across a wide range of commodities. H. halys is a generalist herbivore, capable of consuming >100 different species of host plants, often resulting in substantial economic damage; its feeding damage resulted in US


Environmental Entomology | 2014

Temperature-Related Development and Population Parameters for Drosophila suzukii (Diptera: Drosophilidae) on Cherry and Blueberry

Samantha Tochen; Daniel T. Dalton; Nik G. Wiman; Christopher A. Hamm; Peter W. Shearer; Vaughn M. Walton

37 million of losses in apple in 2010, but this stink bug species also attacks other fruit, vegetable, field crop, and ornamental plant species. H. halys has disrupted integrated pest management programs for multiple cropping systems. Pesticide applications, including broad-spectrum insecticides, have increased in response to H. halys infestations, potentially negatively influencing populations of beneficial arthropods and increasing secondary pest outbreaks. H. halys is also challenging because it affects homeowners as a nuisance pest; the bug tends to overwinter in homes and outbuildings. Although more research is required to better understand the ecology and biology of H. halys , we present its life history, host plant damage, and the management options available for this invasive pest species.


Pest Management Science | 2011

Developing Drosophila suzukii management programs for sweet cherry in the western United States

Elizabeth H. Beers; Robert A. Van Steenwyk; Peter W. Shearer; W. W. Coates; Joseph A. Grant

ABSTRACT Temperature-related studies were conducted on Drosophila suzukii Matsumura (Diptera: Drosophilidae: Drosophilini). From 10–28°C, temperature had a significant impact on blueberries, Vaccinium corymbosum L. (Ericales: Ericaceae), and cherries, Prunus avium (L.) L. 1755 (Rosales: Rosaceae), important commercial hosts of D. suzukii. Temperature had a significant influence on D. suzukii developmental period, survival, and fecundity, with decreasing developmental periods as temperatures increased to 28°C. At 30°C, the highest temperature tested, development periods increased, indicating that above this temperature the developmental extremes for the species were approached. D. suzukii reared on blueberries had lower fecundity than reared on cherries at all temperatures where reproduction occurred. The highest net reproductive rate (Ro) and intrinsic rate of population increase (r m) were recorded on cherries at 22°C and was 195.1 and 0.22, respectively. Estimations using linear and nonlinear fit for the minimum, optimal, and maximum temperatures where development can take place were respectively, 7.2, 28.1, and 42.1°C. The rm values were minimal, optimal, and maximal at 13.4, 21.0, and 29.3°C, respectively. Our laboratory cultures of D. suzukii displayed high rates of infection for Wolbachia spp. (Rickettsiales: Rickettsiaceae), and this infection may have impacted fecundity found in this study. A temperature-dependent matrix population estimation model using fecundity and survival data were run to determine whether these data could predict D. suzukii pressure based on environmental conditions. The model was applied to compare the 2011 and 2012 crop seasons in an important cherry production region. Population estimates using the model explained different risk levels during the key cherry harvest period between these seasons.


Pest Management Science | 2011

Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States.

Daniel T. Dalton; Vaughn M. Walton; Peter W. Shearer; Douglas B. Walsh; Janet Caprile; Rufus Isaacs

BACKGROUND The spotted wing drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae), is a newly introduced pest of sweet cherry on the west coast of North America which produces about 97% of the value of the US sweet cherry crop. D. suzukii initially caused considerable economic loss to cherry growers, who were unaware of this new pest. Little control information was available at the time of initial infestation. Pest control studies were initiated to examine the materials, timings and application methods to control D. suzukii in three major cherry-producing states (California, Oregon and Washington). RESULTS Three classes of registered insecticides, organophosphates, pyrethroids and spinosyns, have demonstrated good topical or residual activity against D. suzukii. Neonicotinoids and the systemic organophosphate dimethoate appear to be able to kill eggs or larvae in fruit. Preliminary timing studies indicate that at least two preharvest insecticide sprays are required to obtain control of D. suzukii in California cherry orchards. Aerially applied malathion ULV (ultra-low volume) appears to be a viable control tactic for this pest. CONCLUSION The results presented here form the basis for developing D. suzukii management programs in the western United States. Additional studies are needed to refine management practices for the different growing regions and conventional versus organic production requirements. Cherry growers will likely need to apply broad-spectrum insecticides in a prophylactic manner until treatment thresholds and monitoring methods have been developed and validated.


Pest Management Science | 2009

Tree fruit IPM programs in the western United States: the challenge of enhancing biological control through intensive management.

Vincent P. Jones; Thomas R. Unruh; David R. Horton; Nicholas J. Mills; Jay F. Brunner; Elizabeth H. Beers; Peter W. Shearer

BACKGROUND Drosophila suzukii was first found in Oregon in August 2009. The threat of this pest to regional small and stone fruit production industries led to investigations on its overwintering capabilities in fruit-growing regions in the Pacific Northwest. Knowledge of its cold tolerance will help in the development of computer models to forecast seasonal population growth and decline. RESULTS Of 1500 adults or pupae, 22 (1.4%) individuals survived the 84 day experimental chilling period. Most (86%) of the survivors were subjected to 10 °C temperature treatments. Survival decreased significantly at lower temperature treatments. Freezing temporarily increased the mortality rate but did not significantly affect overall mortality over the trial period. Flies that emerged from pupae are estimated to survive for up to 103-105 days at 10 °C and for shorter periods at lower temperatures. Field trapping in five fruit production areas has demonstrated overwintering survival in California and Oregon, but lower survival is predicted in Eastern Washington and Michigan. CONCLUSION The experiments reported here indicate that long-term survival of D. suzukii is unlikely at temperatures below 10 °C. Field data from five climatic regions indicated extended low initial D. suzukii field presence in 2010 in all regions except California, where field presence was recorded earlier.


Journal of Economic Entomology | 2012

Evaluation of Monitoring Traps for Drosophila suzukii (Diptera: Drosophilidae) in North America

Jana C. Lee; Hannah J. Burrack; Luz D. Barrantes; Elizabeth H. Beers; Amy J. Dreves; Kelly A. Hamby; David R. Haviland; Rufus Isaacs; Tamara Richardson; Peter W. Shearer; Cory A. Stanley; D. B. Walsh; Vaughn M. Walton; Frank G. Zalom; Denny J. Bruck

The seminal work of Stern and his coauthors on integrated control has had a profound and long-lasting effect on the development of IPM programs in western orchard systems. Management systems based solely on pesticides have proven to be unstable, and the success of IPM systems in western orchards has been driven by conservation of natural enemies to control secondary pests, combined with pesticides and mating disruption to suppress the key lepidopteran pests. However, the legislatively mandated changes in pesticide use patterns prompted by the Food Quality Protection Act of 1996 have resulted in an increased instability of pest populations in orchards because of natural enemy destruction. The management system changes have made it necessary to focus efforts on enhancing biological control not only of secondary pests but also of primary lepidopteran pests to help augment new pesticides and mating disruption tactics. The new management programs envisioned will be information extensive as well as time sensitive and will require redesign of educational and outreach programs to be successful. The developing programs will continue to use the core principles of Stern and his co-authors, but go beyond them to incorporate changes in society, technology and information transfer, as needed.


Environmental Entomology | 2011

Seasonal Phenology and Monitoring of the Non-Native Halyomorpha halys (Hemiptera: Pentatomidae) in Soybean

Anne L. Nielsen; George C. Hamilton; Peter W. Shearer

ABSTRACT Drosophila suzukii Matsumura (Diptera: Drosophilidae), a recent invasive pest of small and stone fruits, has been detected in more than half of the U.S. states, and in Canada, Mexico, and Europe. Upon discovery, several different trap designs were recommended for monitoring. This study compared the trap designs across seven states/provinces in North America and nine crop types. Between May and November 2011, we compared a clear cup with 10 side holes (clear); a commercial trap with two side holes (commercial); a Rubbermaid container with mesh lid and rain tent (Haviland), and with 10 side holes and no tent (modified Haviland); a red cup with 10 side holes (red); and a white container with mesh lid and rain tent (Van Steenwyk). Although fly catches among traps varied per site, overall, the Haviland trap caught the most D. suzukii, followed by the red, Van Steenwyk, and clear trap. The modified Haviland and commercial trap had low captures. Among five crop types in Oregon, a clear cup with mesh sides (Dreves) also was tested and caught the most flies. Traps with greater entry areas, found in mesh traps, caught more flies than traps with smaller entry areas. In terms of sensitivity and selectivity, traps that caught more flies likewise caught flies earlier, and all traps caught 26–31% D. suzukii out of the total Drosophila captured. Future trap improvements should incorporate more entry points and focus on selective baits to improve efficiency and selectivity with regard to the seasonal behavior of D. suzukii.


Environmental Entomology | 2013

Trap Designs for Monitoring Drosophila suzukii (Diptera: Drosophilidae)

Jana C. Lee; Peter W. Shearer; Luz D. Barrantes; Elizabeth H. Beers; Hannah J. Burrack; Daniel T. Dalton; Amy J. Dreves; Larry J. Gut; Kelly A. Hamby; David R. Haviland; Rufus Isaacs; Anne L. Nielsen; Tamara Richardson; Cesar Rodriguez-Saona; Cory A. Stanley; D. B. Walsh; Vaughn M. Walton; Wee L. Yee; Frank G. Zalom; Denny J. Bruck

ABSTRACT The introduction of an invasive species into an agroecosystem can alter both the interspecies dynamics and existing management practices. In the area of introduction, seasonality of Halyomorpha halys (Stål) in soybean fields was investigated by comparing monitoring efficiency of sweep net sampling and two sizes of pyramid traps baited with aggregation compound methyl (E,E,Z) 2,4,6-decatrienoate in 2006–2007. The large pyramid trap caught significantly higher densities of H. halys than the small pyramid trap and the sweep net samples each year. Adult males and females were detected in significantly higher densities in the large pyramid trap than other life stages. The pyramid traps caught H. halys adults and nymphs earlier than sweep net samples, during the R3 and R4 phenological stages of soybean growth. Peak abundances in the pyramid traps occurred during the R5–R6 stages, while the sweep samples were highest during the R6 stage. Soybean is sensitive to stink bug feeding damage from the R3–R6 stages. The occurrence of H. halys in soybean coincides with soybeans critical growth stage. H. halys has become the dominant stink bug species in the crop, indicating that damage thresholds need to be determined.


Environmental Entomology | 2015

Attraction of the invasive halyomorpha halys (Hemiptera: Pentatomidae) to traps baited with semiochemical stimuli across the United States

Tracy C. Leskey; Arthur M. Agnello; J. Christopher Bergh; Galen P. Dively; George C. Hamilton; Peter Jentsch; Ashot Khrimian; Grzegorz Krawczyk; Thomas P. Kuhar; Doo Hyung Lee; William R. Morrison; Dean Polk; Cesar Rodriguez-Saona; Peter W. Shearer; Brent D. Short; Paula M. Shrewsbury; James F. Walgenbach; Donald C. Weber; Celeste Welty; Joanne Whalen; Nik G. Wiman; Faruque U. Zaman

ABSTRACT Drosophila suzukii (Matsumura), an invasive pest of small and stone fruits, has been recently detected in 39 states of the United States, Canada, Mexico, and Europe. This pest attacks ripening fruit, causing economic losses including increased management costs and crop rejection. Ongoing research aims to improve the efficacy of monitoring traps. Studies were conducted to evaluate howphysical trap features affect captures of D. suzukii.We evaluated five colors, two bait surface areas, and a top and side position for the fly entry point. Studies were conducted at 16 sites spanning seven states and provinces of North America and nine crop types. Apple cider vinegar was the standard bait in all trap types. In the overall analysis, yellow-colored traps caught significantly more flies than clear, white, and black traps; and red traps caught more than clear traps. Results by color may be influenced by crop type. Overall, the trap with a greater bait surface area caught slightly more D. suzukii than the trap with smaller area (90 vs. 40cm2). Overall, the two traps with a side-mesh entry, with or without a protective rain tent, caught more D. suzukii than the trap with a top-mesh entry and tent.


Environmental Entomology | 2003

Peach Pest Management Programs Impact Beneficial Fauna Abundance and Grapholita molesta (Lepidoptera: Tortricidae) Egg Parasitism and Predation

Atanas Atanassov; Peter W. Shearer; George C. Hamilton

ABSTRACT A recent identification of the two-component aggregation pheromone of the invasive stink bug species, Halyomorpha halys (Stål), in association with a synergist, has greatly improved the ability to accurately monitor the seasonal abundance and distribution of this destructive pest. We evaluated the attraction of H. halys to black pyramid traps baited with lures containing the pheromone alone, the synergist methyl (2E,4E,6Z)-decatrienoate (MDT) alone, and the two lures in combination. Traps were deployed around areas of agricultural production including fruit orchards, vegetables, ornamentals, or row crops in Delaware, Maryland, North Carolina, New Jersey, New York, Ohio, Oregon, Pennsylvania, Virginia, and West Virginia from mid-April to mid-October, 2012 and 2013. We confirmed that H. halys adults and nymphs are attracted to the aggregation pheromone season long, but that attraction is significantly increased with the addition of the synergist MDT. H. halys adults were detected in April with peak captures of overwintering adults in mid- to late May. The largest adult captures were late in the summer, typically in early September. Nymphal captures began in late May and continued season long. Total captures declined rapidly in autumn and ceased by mid-October. Captures were greatest at locations in the Eastern Inland region, followed by those in the Eastern Coastal Plain and Pacific Northwest. Importantly, regardless of location in the United States, all mobile life stages of H. halys consistently responded to the combination of H. halys aggregation pheromone and the synergist throughout the entire season, suggesting that these stimuli will be useful tools to monitor for H. halys in managed systems.

Collaboration


Dive into the Peter W. Shearer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nik G. Wiman

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Elizabeth H. Beers

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jana C. Lee

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Vincent P. Jones

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Horton

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Thomas R. Unruh

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge